Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2013

Further Mathematics

8360/2

Level 2

Paper 2 Calculator

Friday 21 June 2013 9.00 am to 11.00 am

For this paper you must have:

- a calculator
- mathematical instruments.

Time allowed

• 2 hours

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.
- If your calculator does not have a π button, take the value of π to be 3.14 unless another value is given in the question.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle
$$=\frac{1}{2}ab\sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1 The circle $x^2 + y^2 = 25$ touches each side of the square as shown.

Work out the total	shaded area.		
	A		(2
	Answer	 	 (3 marks)

Turn over ▶

2	w is an integer such that $6 \le 3w < 18$ x is an integer such that $-4 \le x \le 3$
2 (a)	Work out all the possible integer values of w.
	Answer
2 (b)	Write down the highest possible value of x^2
	Answer (1 mark)
2 (c)	Work out the lowest possible value of $w-x$
	Answer

3 The sketch graphs of two straight lines are shown.

5

3 (a) Work out the coordinates of P.

.....

Answer (..... (1 mark)

3 (b) Work out the coordinates of Q.

Answer (.....) (3 marks)

3 (c) Use your answers to parts (a) and (b) to work out the area of triangle OPQ.

Turn over ▶

4	You are given that $m: n=2:5$
4 (a)	Write m in terms of n .
	$m = \dots (1 \text{ mark})$
	<i>"</i> —
4 (b)	You are also given that $a:b=10m:3n$
	Work out $a:b$ where a and b are integers.
	Answer (2 marks)

5
$$y = (5x - 3)^2$$

Work out
$$\frac{dy}{dx}$$

Give your answer in the form a(bx-c) where a, b and c are integers > 1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots \tag{4 marks}$$

Turn over for the next question

Turn over ▶

6 (a) Show that
$$\frac{c^2 + 5c + 4}{3c + 3}$$
 simplifies to $\frac{c + 4}{3}$

(2 marks)

6 (b) Hence, or otherwise, simplify fully
$$\frac{c^2 + 5c + 4}{3c + 3} + \frac{3 - 2c}{6}$$

Answer (3 marks)

7 The graph shows two straight lines.

line A

The equation of line A is $y = 2 - x$
Work out the equation of line B .

Turn over ▶

8 A sketch of y = f(x) is shown. There are stationary points at A and B.

8 (a) Write down the equation of the tangent to the curve at A.

Answer......(1 mark)

8 (b) Write down the equation of the normal to the curve at B.

Answer......(1 mark)

8 (c) Circle the range of values of x for which f(x) is an increasing function.

x < -2 -2 < x < 1 -3 < x < 6 x > 1

(1 mark)

9	PQRS is a trapezium.	
	P	Not drawn accurately
	2 < 14 m	
	Work out the perimeter of <i>PQRS</i> .	
	Perimeter =	m <i>(5 marks)</i>

Turn over ▶

10 A function f(x) is defined as

$$f(x) = x + 3$$
 $-3 \le x < 0$
= 3 $0 \le x < 1$
= 5 - 2x $1 \le x \le 2$

Draw the graph of y = f(x) for $-3 \le x \le 2$

(3 marks)

11 (a) Work out $\begin{pmatrix} 2 & -1 \\ \frac{1}{3} & 0 \end{pmatrix} \begin{pmatrix} 0 & b \\ a & c \end{pmatrix}$

Give your answer in terms of a, b and c.

11 (b) You are given that $\begin{pmatrix} 2 & -1 \\ \frac{1}{3} & 0 \end{pmatrix} \begin{pmatrix} 0 & b \\ a & c \end{pmatrix} = \mathbf{I}$ where **I** is the identity matrix.

Work out the values of a, b and c.

$$a=\ldots\ldots$$
 , $b=\ldots\ldots$, $c=\ldots\ldots$ (3 marks)

12	Prove that $(5n+3)(n-1) + n(n+2)$ is a multiple of 3 for all integer values of n .							
	(4 marks)							
13	The graph of $y = f(x)$ is a straight line.							
	The domain of $f(x)$ is $1 \le x \le 5$ The range of $f(x)$ is $3 \le f(x) \le 11$							
	Work out one possible expression for $f(x)$.							
	$f(x) = \dots $ (4 marks)							

14	Work out an expression for the n th term of the quadratic sequence						
		11	15	21	29	39	
			•••••				
	•••••						
					•••••	•••••	
					• • • • • • • • • • • • • • • • • • • •	•••••	
		1	ath term :	_			(4 marks)

1 5

Turn over ▶

15 ((a)	a^{11}	$\times h^6$	$\times c =$	a9 x	, h10
13 (aı	и	$\times \nu$	$\times \iota -$	$u \times$	$\cdot \nu$

Write c in terms of a and b. Give your answer in its simplest form.

$$c = \dots$$
 (3 marks)

15 (b)
$$p^{-2} = q^6 \times r^4$$

Write p in terms of q and r. Give your answer in its simplest form.

$$p = \dots$$
 (2 marks)

Not drawn accurately

- 16 A, B and C are points on the circumference of a circle.
 - BC is a diameter
 - BCP is a straight line
 - AP is a tangent to the circle
 - PC = CA

Work out the value of angle *CPA*, marked *x* on the diagram.

$x = \dots degrees$	(5 marks)
---------------------	-----------

4=	0.1	4	1 _
17	Solve	$\frac{1}{x-2}$	$-\frac{1}{x+3} = 5$

Answer...... (7 marks)

18	The curve	$y = x^3 + bx + c$	has a stationary poin	t at (-2, 20).	
	Work out the v	alues of b and c .			
		<i>b</i> =			
		c =		(′5 marks)

Turn over for the next question

1 9

Turn over ▶

19 ABCDEFGH is a cuboid. M is the midpoint of HG. N is the midpoint of DC.

19 (a) Show that $BN = 7.5 \,\text{m}$

 (2 ma	

19 (b)	Work out the angle between the line MB and the plane $ABCD$.
	Answer degrees (2 marks)
19 (c)	Work out the obtuse angle between the planes <i>MNB</i> and <i>CDHG</i> .
, ,	
	Answer degrees (2 marks)

2 1

Turn over ▶

This right circular cone has radius 2p and height 5p. The dimensions are in centimetres.

The volume of the cone is $22\,500\pi$ cm³.

Work out the value of p .

 $p = \dots$ cm (4 marks)

21	$(x-a)$ is a factor of $2x^3 - 7ax + 3a$	
	Work out the largest possible value of a .	
	Answer	(4 marks)
22	Solve $\tan^2 \theta + 3 \tan \theta = 0$ for $0^\circ < \theta < 360^\circ$	
	Answor	(5 marks)

2 3

Turn over ▶

	24
23	In triangle ABC , AP bisects angle BAC .
	Not drawn accurately
	B P C
	Use the sine rule in triangles ABP and ACP to prove that $\frac{AB}{AC} = \frac{BP}{PC}$

••	
••	
••	
••	
	(5 marks)

END OF QUESTIONS

