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1  Further kinematics
Velocity, v, and displacement, x.

dx ) dv d%x N
Weknowthat v = — =x, and a= — = — =X
dt dt dt?

= v=[adt and x=[vdt

d . . : .

Note: d—: = x 1s the rate of increase of X, therefore it must always be measured in the
. . . . d? . .

direction of X increasing. For the same reason d—tf = X must also be measured in the

direction of X increasing.

X is the displacement from O in the positive x-axis direction,

@) P
® @

—> X
—->> i
You must mark x and ¥ in the directions shown

Example: A particle moves in a straight line and passes a point, O, with speed 5 m s at time
t= 0. The acceleration of the particle is given by a=2t—6 ms>.
Find the distance moved in the first 6 seconds after passing O.

Solution:
0 P
L L
X
—>5 —> X
P
x=v=[xdt =[2t—6dt = t*?—6t+c; V=5 when t=0 = c =5
= v=x= t?—-6t+5
= x=[idt = [t?—6t+ 5dt = t3—3t2+5t+ ¢’ x=0 when t=0 = ¢’ =0

= x=§t3—3t2+5t.

First find when v=0, = t =1 or 5. The particle will change direction at each of these times.

t=0=x=0 = particle moves forwards 2§ from t=0to 1
1

t=1 = x = 23 particle moves backwards 102 from t=1to 5

t=5 = x = —8-= particle moves forwards 2% from t=5t0 6

t=6 > x = -6 = total distance moved is 15§ m.
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Forces which vary with speed

. d
Reminder a=vZ=
dx

dv dx dv dv
aQa=—=— — =TV —
dt dt dx dx

Example: On joining a motorway a car of mass 1800 kg accelerates from 10 ms™ to 30 ms™.
The engine produces a constant driving force of 4000 newtons, and the resistance to
motion at a speed of vm s is 0.9v* newtons. Find how far the car travels while
accelerating.

Solution:

A

Res — 4000 — 0.9v> = 1800 v 3—Z

0.9v*
= [Fdx = [2)1800 x ——— dv i, 4000

4000—0.9v2
v
— X =-(1800 = 1.8) x [In (4000 — 0.9v2]30 1800g

3190
3910

— X = 1000 xln( ) = 203.5164527

= the car travels a distance of 204 m, to 3 S.F.
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2  Elastic strings and springs

Hooke’'s Law

Elastic strings

. : S pl .
The tension T in an elastic string is T = Tx , where | is the natural (unstretched) length of the

string, X is the extension and A is the modulus of elasticity.

T

When the string is slack there is no tension.

Elastic springs

. . . . ! .
The tension, or thrust, T in an elastic string is T = Tx , where | is the natural length of the
spring, X is the extension, or compression, and A is the modulus of elasticity.

In a spring there is tension when stretched, and thrust when compressed.

T T
VWWWWWWWWWWWWMWAVY VWWWWWWWWWWY
X
I X |
Tension (stretched) Thrust (compressed)

Example: An elastic string of length 1.6 m and modulus of elasticity 30 N is stretched
between two horizontal points, P and Q, which are a distance 2.4 m apart. A particle of
mass M kg is then attached to the midpoint of the string, and rests in equilibrium, 0.5 m
below the line PQ. Find the value of m.

Solution: 12
p .
By symmetry, the tensions in each half 0 0 Q
of the string will be equal. T 05 T
Each half has natural length | = 0.8 m, 6 0
and modulus of elasticity 4 =30 N. L

Pythagoras = PL=1.3 mg

= extension in each half, X, = 0.5 m
Ax _ 30x0.5

= T=—=
l 0.8

= 18.75

Res T 2Tsind =mg = 2x18.75x%= mg

= m=22%-3532182104 = 3.5 to2S.F.
13g
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Example: Two light strings, S; and S,, are joined together at one end only. One end of the
combined string is attached to the ceiling at O, and a mass of 3 kg is attached to the other,
and allowed to hang freely in equilibrium. The moduli of S; and S, are 75 N and 120 N,
and their natural lengths are 50 cm and 40 cm. Find the distance of the 3 kg mass below O.

Solution:
0 As the strings are light, we can ignore their masses and assume that the
A tensions in the two strings are equal.
: (The tension is actually constant throughout the length of the combined string.)
s 0.5 Res T T = 3¢9
1 :
v For S,
A
' _ _ l_x _ 75x1 . i
Xl\s/ T 3g .= _0.5 = X1 = =0
/\ For S,
04 T=3g=l—x= 120x, = x, = ya
S, v l 0.4 100
A A = £ =
X, T = X1 + % Too 0.294
v ] . .
v = Distance of 3 kg mass below O, is 0.5 + 0.4 + 0.294
39 = 1.194 = 12m to2SF.

Example: A box of weight 49 N is placed on a horizontal table. It is to be pulled along by a
light elastic string with natural length 15 cm and modulus of elasticity 50 N. The
coefficient of friction between the box and the table is 0-4. If the acceleration of the box is
20 cm s © and the string is pulled horizontally, what is the length of the string?

Solution:
02 R A=50
->> ¢ 1 =04
Fe | >T
jo < Tors KT
Res T R=49
Box moving = F=Fpx=#¢R = 0-4x49=19.6
Res > N2L, T-F=5x02 = T=206 m=49+98=35
50xx

Hooke’s Law = T= =206 = x =0-0618

0-15
= the length of the string is 0-15+ 0-0618 = 0-2118 = 0-:212m to 3 S.F.
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Example: Two elastic springs, S; and S,, are joined at each end, so that they are side by side.
The bottom end of the combined spring is placed on a table, and a weight of 60 N is
placed on the top. The moduli of S; and S; are 80 N and 100 N, and theig natural lengths
are 50 cm and 60 cm . Find the distance of the 60 N weight above the table.

Solution: 4, =80, I, =0.5,and 4, =100, I, =0.6.

The springs will have the same compressed length, e X
but their compressions, X; and X,, will differ. . T
! ? 0.6
Res T T, +T,=60 I 0.5
Hooke’s Law = T,=2 71,-100% 1| 60
0.5 0.6
Land Il = 160X +22% = 60

and compressed lengths equal = 0.5-%; = 0.6 — X,

= X1 = X%X-0.1

=  160(x—0.1) + %xz - 60

= 9§—°x2 - 76 = X = 02326530612

= weightis 0.6 —x; = 0.3673... m = 37 cm above the tatide, to 2 S.F.

Energy stored in an elastic string or spring

For an elastic string the tension is given by T = ATx , when the extension is X.Zf2the string is
extended by a further small amount, o, then the work done oW = T &«

= Total work done in extending from X=0 to x= X is approximately )3T 6x

and, as ox — 0, the total work done, W= | Ox Tdx = OxlTx dx

Ax? . . : . .
= W= T the work done in stretching an elastic string from its natural length to an

extension of X.

- Ax? . . : . : :
Similarly W = T the work done in stretching (or compressing) an elastic spring from its

natural length to an extension (or compression) of X.

Ax? . . . .
This expression, % , is also called the Elastic Potential Energy, or E.P.E., of an elastic spring

or string.
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Example: An elastic spring, with natural length 30 cm and modulus of elasticity 42 N, is
lying on a rough horizontal table, with one end fixed to the table at A. The spring is held
compressed so that the length of the spring is 24 cm. A teddy bear of mass 2 kg is placed
on the table at the other end of the spring, and the spring is released. If the friction force is
5N, find the speed of the teddy bear when the length of the spring is 28 cm.

Solution: At a length of 0.24 m the compression X =0.3 — 0.24 = 0.06 and

42x0.06>
the energy stored, E.P.E., is il 0.252 J.
2%0.3

At a length of 0.28 m the compression x = 0.3 —0.28 =0.02 and

42x%0.022

the energy stored, E.P.E., is ———— =0.028 J,
2x0.3

= energy released by the spring is 0.252 - 0.028 = 0.224 J.

The initial speed of the teddy bear is 0, and let its final speed be v ms™.
Work done by the spring is 0.224 J, which increases the K.E.
Work done by frictionis 5 x 0.04 = 0.2 J, which decreases the K.E.

Final K.E. = Initial K.E. + energy released by spring — work done by friction
= ~x2v2 = 0+ 0224 - 02 = 0.024

= Vv = 10.024 = 0.154919338
— speed of the teddy bearis 15 cms™”, to 2 S.F.

Example: A climber is attached to a rope of length 50 m, which is fixed to a cliff face at a
point A, 40 metres below him. The modulus of elasticity of the rope is 9800 N, and the
mass of the climber is 80 kg. The ground is 80 m below the point, A, to which the rope is
fixed. The climber falls (oh dear!). Will he hit the ground?

Solution:

Only an idiot would consider what happens at the moment the
rope becomes tight!

Assume the ground is not there — how far would he fall before
being stopped by the rope. In this case both his initial and final p Vv
velocities would be 0, and let the final extension of the rope be
Xm.

Loss in P.E. = mgh =80 g x (40 + 50 + X) %0
= 809 (90 + x), which increases K.E. and so is positive. 1

9800x2
2X50

= 98 x*

Work done in stretching rope, E.P.E., =

Final K.E. = Initial K.E. + Loss in P.E. — E.P.E.
= 0=0+80g(90+x) — 98x* = x* — 8 —720
= X = 31.12931993 (or negative)

The climber would fall 121.1 m, so he would hit the ground 120 m below, but not going
very fast.
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3 Impulse and work done by variable forces
Impulse of a variable force

A particle of mass m moves in a straight line under the influence of a force F(t), which varies
with time.

In a small time 6t the impulse of the force 61 ~ F(t) 6t
and the total impulse from time t; to t, is [ = ZZ F(t)dt
and as 6t — 0, the total impulse is
_ [t
1= ., F(dt
Also, F(t) = ma = m%
t v
= ftle(t)dt = [, mdv
= 1= f:f F(t)dt =mV —mU

which is the familiar impulse = change in momentum equation.

Example: When a golf ball is hit, the ball is in contact with the club for 0.0008 seconds, and
over that time the force is modelled by the equation F = kt(0.0008 —t) newtons, where
k=4.3 x 10'°. Taking the mass of the golf ball to be 45 grams, and modelling the ball as a
particle, find the speed with which the ball leaves the club.

Soution:  F(t) = kt(0.0008 —t), U=0, V=2, m=0.045

1= [J7°°F(t)dt =mV -mU

= 0.045V —0 = [>7°%

o kt(0.0008 - t) dt

_ klo0.0004c2 = L¢3
=3.6693333

= V =815ms" (or 294kmh’1)
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Work done by a variable force.

A particle of mass m moves in a straight line under the influence of a force G(X), which varies
with time.

Over a small distance dx the work done by the force SW ~ G(x)éx
and the total work done in moving from a displacement X; to X, is W = Z;i Gx) Ox
and as §x — 0, the total work done is

W = f;‘fa(x)dx
Also, G(x) =ma=m%=m—x—=mv—v
= f;lzG(x)dx = f;mvdv
= W= fxxlz G(x)dx :%mVZ—%mUZ

which is the familiar work - energy equation.

Example: A particle of mass 0.5 kg moves on the positive x-axis under the action of a
) 40 . . .
variable force 1z newtons, directed away from O. The particle passes through a point

2 metres from O, with velocity 8 m s away from O. It experiences a constant resistance
force of 6 newtons. Find the speed of the particle when it is 5 metres from O.

Solution:
6 40
01 , —@—»x?
I T T
2 5 X
Grmmemnoneeno >
X
—>8ms’! — > vms’!
The work done by the resistance is 6 x 3 =18 J Decreases K.E. so negative
. (540 -4071° N
The work done by the force is fZ o dx = —~ .~ 12 J. Increases K.E. so positive
2

Final K.E. = Initial K.E. — work done by resistance + work done by force

- %xo.sv2 - %x0.5x82 — 18412 = 107

= V = V40 ms.
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4 Newton’s Law of Gravitation

Tycho Brahe made many, many observations on the motion of planets. Then Johannes Kepler,
using Brahe’s results, formulated Kepler’s laws of planetary motion. Finally Sir Isaac Newton
produced his Universal Law of Gravitation, from which Kepler’s laws could be derived.

Newton’s law of gravitation

The force of attraction between two bodies of masses M; and M, is directly proportional to
the product of their masses and inversely proportional to the square of the distance, d, between
them:-

_ GMiM,
-
where G is a constant known as the constant of gravitation.

Connection between G and g.

It can be shown that the force of gravitation of a sphere acting on a particle lying outside the
sphere, acts as if the whole mass of the sphere was concentrated at its centre.

Model the earth as a sphere, radius R and mass M. m

The force on a particle of mass m at the surface of the earth is

_ GMm
-
But we know that the force on m is mg, towards the centre of the earth,
GMm 5
= =mg = GM=g¢gR This is so easy that you should work it out every time

R2
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Example: A space rocket is launched with speed U from the surface of the earth whose radius
is R. Find, in terms of U, g and R, the speed of the rocket when it has reached a height of
2R.

. . . . A A
Solution:  Firstly, when the rocket is at a height of 2R, ]
it is 3R from the centre of the earth. 2R§ i
At the surface of the earth 3R
GMm o Y ;
— = Mg = GM=¢gR
= QGravitational force at a distance of X from the centre of the M
. GMm _ gR’m
earth is - T
x x
2
.. (3R gR™m
= Work done by gravity = f R 2 dx
2 43R
ZR"m 2 .
= [— ] =-mgR Decreases K.E. so negative
x g 3

Final K.E. = Initial K.E. — work done gravity
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5 Simple harmonic motion, S.H.M.

The basic S.H.M. equation ¥ = —w?x
If a particle moves in a straight line so that its ¥
acceleration is proportional to its distance . >>‘
from a fixed point O, and directed towards O, A IO B
then o > G N
. a X
X = —w’x

and the particle will oscillate between two points,
A and B, with simple harmonic motion.

Notice that % is marked in the direction of X increasing n the diagram, and, since @* is
positive, X is negative, so the acceleration acts towards O.

X=Asin &t and x =A cos at

Solving % = —w?x, A.E.is m l=_p? = m=ziw
= G.S.is x=Asin wt + Bcos ot
If X starts from O, X =0, then Xx=asin ot

and if X starts from B, X=a, then X =a cos wt

Period and amplitude

From the equations X =asin et and X=acos wt
. . . . . 27
we can see that the period, the time for one complete oscillation, is T = o

and that the amplitude, maximum distance from the central point, is a.

v: = wZ(aZ _xZ)
. 2 o dv
X = —w*x, and remember that X=v—_-
d

= vd—z= —wix = [vdv = [-wxdx
1 1 1

= -v? = ——w'x?+-c
2 2 2

But v=0 when X is at its maximum, X=+a, = C=a’®°

= v? = w?(a®—x?)

Example: A particle is in simple harmonic motion about O. When it is 6 metres from O its
speed is 4 m s, and its deceleration is 1.5 m s Find the amplitude of the oscillation, and
the greatest speed as it oscillates. Find also the time taken to move a total distance of
16 m starting from the furthest point from O.
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Solution:  We are told that v=4 and ¥ =-1.5 whenx=6
¥=— o = “15=-60° = ©=05 taking positive value

v? = w?(@*-x?) = 16= 0.52((12 -6%) = a=10 taking positive value

Starting from the furthest point from O, we use X =a cos @t=10 cos 0.5t
When the particle has moved 16 metres, X =—6
= —6=10cos 0.5t = t=2 arccos(—0.6) =4.43 seconds to 3 S.F.

Horizontal springs or strings

Example: Two identical springs, of natural length | and modulus A, are joined at one end, and
placed on a smooth, horizontal table. The two ends of the combined spring are fixed to
two points, A and B, a distance 2| apart. A particle of mass m is attached to the springs at
the midpoint of AB; the particle is then displaced a distance a towards B and released.

() Show that the particle moves under S.H.M.
(b) Find the period of the motion.
(© Find the speed of the particle when it has moved through a distance of 1.5a.

Solution: A good diagram is essential.

i
T, T,
A VWWWWWWWWWWWWWWWWWWWWWAMNWVNANNV B
o X
| I
a

(a) Consider the mass at a displacement of X from O.

A . . A .
T, = Tx and is a tension: T,= Tx and is a thrust
A .
Res »> —2x Tx =mx

.. 22 . . . . 21
= X=- X which is the equation of S.H.M., since i o A, m and | are all positive

(Note that the diagram still works when the particle is on the left of O. x will be negative, and so
both T, and T, will be negative, and will have become thrust and tension respectively.)
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=27 |—

(b) The periodis T= .

2T ml
w

(c) When the particle has moved 1.5a, it is on the left of O and x=-0.5a

2 20,2 22 2 _ 2A o 2 2y _ 34 2
vt = w(a*—x*) = v —ml(a (O.Sa)) -a
31
— V= |[—a
2ml

Vertical strings or springs

In these problems your diagram should show clearly

the natural length, |
the extension, e, to the equilibrium position
the extension from the equilibrium position, X.

Example: A mass of m hangs in equilibrium at the end of a vertical string, with natural length
| and modulus A. The mass is pulled down a further distance a and released. Show that,
with certain restrictions on the value of @ which you should state, the mass executes

S.H.M.
Solution:
= In the equilibrium position,
i A
] Res T Te= Te =mg
I
At a further extension of X,
X 4T Res ¥ N2L, mg-T = m¥
€ v Ale+x) .
A I AT = mg — f =mx
X !
: .. A
v mg I \lv/ = xZ—EX since gzmg
x o , A
mg whichis SHM., o~ =—.

Im

The amplitude will be a, and, since this is a string, the mass will
perform S.H.M. only if a<e.

Note

e If a >e the mass will perform S.H.M. as long as the string remains taut; when the string
is not taut, the mass will move freely under gravity.

e Ifaspring is used then the mass will perform S.H.M. for any a (as long as the mass does
not try to go above the top of the spring).
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6 Motionin acircle 1
Angular velocity

A particle moves in a circle of radius r with constant
speed, V.

Suppose that in a small time o't the particle moves
through a small angle 66, then the distance moved will

>
be 5s=r &0 ‘
s
and its speed v==2 = % j

st st @
ae .
and, as ot —> 0, v = rE =ré
dao . . .
i @ is the angular velocity, usually written as the Greek letter omega, @

and so, for a particle moving in a circle with radius r, its speed isV=rw

Example: Find the angular velocity of the earth, and the speed of a man standing at the
equator. The equatorial radius of the earth is 6378 km.

Solution:  The earth rotates through an angle of 27 radians in 24 hours

21

= o= —= = 7272205217 x 107 = 727 %107 rads' to3S.F.
24%x3600

A man standing at the equator will be moving in a great circle

— speed V = ro = 6378000 x 7.272205217 x 10° =464 ms’ to 3 S.F.

Acceleration

A particle moves in a circle of radius r with constant speed, V.

Suppose that in a small time Ot the particle moves through a small angle 6, and that its
velocity changes from V) to Vo,

then its change in velocity is & = V» — vy, which is shown in the second diagram.

The lengths of both v; and V, are v, and the angle between v; and V, is 06.  isosceles triangle

. 66 56
= §\l=2sz1n? z2VX7=V5(9, since sin h~h for h small
Sv 66
= —=V —
ot ot
. dv ae .
as ot— 0, acceleration a= —=Vv— =V
dt dt
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2
. v v
But 8 = o= - = a=—-=ra"
r r

Notice that as 98 — 0, the direction of dv becomes perpendicular to both v; and V», and so
is directed towards the centre of the circle.

2
The acceleration of a particle moving in a circle with speed v is a=raef = - and is

directed towards the centre of the circle.

Alternative proof

If a particle moves, with constant speed, in a circle of radius r and centre O, then its position
vector can be written

r=r (C(.)S 6) = r=r <_ sin 0 .9> since I is constant
sin @ cos@ 0
Particle moves with constant speed = 6 = @ is constant
, —sin @ . . . ,
= r=rw c0s 0 = speed is V=Trw, and is along the tangent since .7 =0
. (—cosH 9) _ 2 (cos@) _ 2
= r=rw _ . ) = —wr| . =-wr
-sinf 6 sin @
. . 2 v? .
= accelerationis ra” (or T) directed towards O. in opposite direction to r

Motion in a horizontal circle
Example: A blob of mass of 3 kg is describing horizontal circles on a smooth, horizontal
table. The blob does 10 revolutions each minute.

An elastic string of natural length 0.6 metres and modulus 7.2 newtons is attached at one
end to a fixed point O on the table. The other end is attached to the blob.

Find the full length of the string.

T
Solution:  Let the extension of the string be X. I e |
A=72,1=0.6, m=3 (0] <<
10x2m T ra’
="y 3 Grrmmmenenees > <>
0.6 X

2 2
Res « N2L, T=mre?= 3(0.6+x) x (g) = (0.6 +x) ”?

7.2
Hooke’s Law = T = 0_6x: 12x

2
= (0.6+x)% = 12x = 0.67% +x7’ =36x

0.672
36—m2
= full length of string is 0.6 + X = 0.827 to 3 S.F.

= 0.226623537

J
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Conical pendulum

Example: An inextensible light string is attached at one end to a fixed point A, and at the
other end to a bob of mass 3kg.

The bob is describing horizontal circles of radius 1.5 metres, with a speed of 4 ms™.

Find the angle made by the string with the downward vertical.

v: 16 32

Solution: Acceleration= — =— = —
I 1.5 3

Res <« N2L, Tsiné =3><33—2 = 32

Res T Tcos 8 =39
32
Dividing = tan =¥’ = 1.08843...

= 0 =474° tolD.P.

Banking

Example: A car is travelling round a banked curve; the radius of the curve is 200 m and the
angle of banking with the horizontal is 20°. If the coefficient of friction between the tyres
and the road is 0.6, find the maximum speed of the car in km h™".

Solution:

For maximum speed — (i) the friction must be acting down the slope and (ii) the friction must
be at its maximum, uR.

= F = 0.6R I
Res T (perpendicular to the acceleration) R cos 20 = F sin 20 + mg II
2
Res <, N2L,  Fcos20 + Rsin20 = m% 1
2

[and I = mz”m — R (0.6 cos 20 + sin 20) 1\
land I = mg = R(cos 20— 0.6 sin 20) A%
VeV = v? _ (06cos20 + s.in 20)

200g (cos 20 — 0.6 sin 20)

= V = 49.16574344 ms' = 176.9966764 kmh' = 180 kmh' to2Ss.F.
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Inside an inverted vertical cone

Example: A particle is describing horizontal circles on the inside of an upside down smooth
cone (dunce’s cap), at a height h above the vertex. Find the speed of the particle in terms
of g and h.

Solution: At first, it seems as if there is not enough information. Put in letters and hope for

the best!

Let the angle of the cone be 26, the radius of the L
circle in which the particle is moving r, the T
normal reaction R and the mass of the particle

be m.

2

Res < N2L, Rcos @ = mUT

Res T R sin & =mg
172
Dividing = cotfd = —
rg
But cotd = —
= v = gh = v=,g

14/04/2013 Mechanics 3 SDB
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7 Motion in a circle 2
Motion in a vertical circle

When a particle is moving under gravity in a vertical circle, the speed is no longer constant.

The ‘alternative proof’, given a few pages earlier, can easily be modified to show that the
2

. . . v
acceleration towards the centre 1s still -

2
Proof that a = UT for variable speed

If a particle moves in a circle of radius r and centre O, then its position vector can be written
r=7 (cos 9)
- sin 8
= r=r (_ sin ¢ .9) =70 (_ sin 8) since I is constant
- cosf 0 cosf

_ . (—cosB 6% — sinb é) _ _,g2(€0sOY , s (—sind
r(—sineéz +cos@ 6 r6 ( in9) TH( cos O )

From this we can see that the speed is V=rf = rw, and is perpendicular to the radius

We can also see that the acceleration has two components

2
. v
ro%2 =ro’ = oo towards the centre opposite direction to r
and r6 perpendicular to the radius which is what we should expect since v = ré,and r is constant.

2
. v: .
In practice we shall only use a=ra’ = P directed towards the centre of the circle.

Four types of problem

1) A particle attached to an inextensible string.
2) A particle moving on the inside of a smooth, hollow sphere.
3) A particle attached to a rod.

4) A particle moving on the outside of a smooth sphere.

Types 1) and 2) are essentially the same: the particle will make complete circles as long as it
is moving fast enough to keep T or R > 0,
where T is the tension in the string, or R is the normal reaction from the sphere.

Types 3) and 4) are similar when the particle is moving in the upper semi-circle, the thrust
from a rod corresponds to the reaction from a sphere. However the particle will at some
stage leave the surface of a sphere, but will always remain attached to a rod.

The particle will make complete circles as long as it is still moving at the top — the thrust
from a rod, or reaction from a sphere, will hold it up if it is moving slowly.

Don’t forget the work-energy equation — it could save you some work.

20 14/04/2013 Mechanics 3 SDB



Vertical motion of a particle attached to a string

Example: A small ball, B, of mass 500 grams hangs from a fixed point, O, by an inextensible
string of length 2.5 metres. While the ball is in equilibrium it is given a horizontal impulse
of magnitude 5 N s.

@
(b)

(©)
(d)

Find the initial speed of the ball.

Find the tension in the string when the string makes an angle € with the
downwards vertical.

Find the value of & when the string becomes slack.

Find the greatest height reached by the ball above the lowest point.

Solution:

(©

@

(b)

1 _
l=mv-mu = S5=-v = v =10 ms".

Suppose that the particle is moving with speed v at P.

)
2.5

Res N\ N2L, T—%gcosHZ

N |-

From the work-energy equation

Gainin P.E. = % g x (2.5 - 2.5cos6)

2

X =V =

N |-
N |-
N |-

><%><102 - %gx2.5(1—cos6’)

=Vv'=100-5g+5gcosf  ......... I

1 (100-5g + 5g cos®)
) 2 2.5
= Egcosﬁ +20-g+gcosé

=T = 14.7 cosf +10.2

=T =%gcos9+

Notice that this still describes the situation when 8 > 90°, since cos@will be negative.

The string will become slack when there is no tension

= T =147cos0 +102=0

102
= cosf = ——=
14.7

= 60=133.9378399 = 133.9° to the nearest tenth of a degree.
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(d)

At the greatest height, the speed will not be zero, so we cannot use energy to get
straight to the final answer. Therefore we need to ‘start again’.

We know that v* = 100 -5g+ 5gcos@, from |, and that cosé = —% atP,
= v=+17

= initial vertical component of velocity is U =+/17 cos &
final vertical component of velocity =0, and g = — 9.8
Using v* = u” + 2as we get s = 0.4497488289
The height of P above A is 2.5 — 2.5 cosf = 4.234693898
= the greatest height of the ball above Ais 4.7 m to 2 S.F.

Vertical motion of a particle inside a smooth sphere

Example: A particle is moving in a vertical circle inside a smooth sphere of radius a. At the

lowest point of the sphere, the speed of the particle is U. What is the smallest value of U
which will allow the particle to move in complete circles.

Solution:  Suppose the particle is moving with speed v when it

22

reaches the top of the sphere, and that the normal reaction of
the sphere on the particle is R.

2

Res{ N2L, R+mg = m%

For the particle to remain in contact with the sphere (i.e. to
make complete circles), R>0 )
= V>ag A

From the lowest point, A, to the top, the gain in P.E. is m x g x 2a = 2mga

The work-energy equation gives

1 1
> mv2=5 mU ? - 2mga

= U= v+ 4ga > 5Sag since V> ag

Note that if U?*= 5ag the particle will stop at the top (v = 0), and so not make complete
circles = For complete circles, U > ./5ag.

Note that the method is exactly the same for a particle attached to a string, replacing the
reaction, R, by the tension, T.
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Vertical motion of a particle attached to a rigid rod

Example: A particle is attached to a rigid rod and is moving in a vertical circle of radius a. At
the lowest point of the circle, the speed of the particle is U. What is the smallest value of U
which will allow the particle to move in complete circles.

Solution:  As long as the particle is still moving at the top of the

circle, it will make complete circles. v?

a

If it is moving slowly (v* < ag), the force in the rod will be a
thrust, T, and will prevent it from falling into the circle. Again, |
if v= 0, it will stop at the top, o

= for complete circles v>0

From the lowest point, A, to the top S d
the gain in P.E. is m x g x 2a =2mga A

The work-energy equation gives

2 mv?=2 mu?-2mga
2 2

= u?= v2+4ga > 4ag since V*> 0
= For complete circles, U > 2,/ag.
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v

Example:

Solution:

24

Vertical motion of a particle on the outside of a smooth sphere

A smooth hemisphere of radius a is placed on horizontal ground. A small bead of

mass M is placed at the highest point and then dislodged. @ is the angle made between the
line joining the centre of the hemisphere to the bead with the upward vertical.

(a) Find the force of reaction between the bead and the hemisphere, in terms of m, g, a

and 6.

(b) Find the value of @ when the bead leaves the surface of the hemisphere.
(c) Find the speed with which the bead strikes the ground.

@

(b)

(©

Path

When the angle is 6,
P.E. lost = mg(a —a cos6)

Work-energy equation

%mv2=0+mga(1 —COSO) i, |

Res £ N2L, mgcosd — R =m

UZ
= R=mgcos€—m; ..................... 1

land Il = R=mgcosd —2mg(1 — cosb)
= R = mg(3cosf —2)

R can never be negative, and so the bead will leave the hemisphere when R =0

2
= cosf = 3

= 6 = 48.2° to the nearest tenth of a degree.

The only force doing work as the particle falls from the top of the hemisphere to
the ground is gravity. Note that R is always perpendicular to the path and so does
no work.

P.E. lost = mga

Work-energy equation gives
% mv’ = 0 + mga

= v = ,/2ag
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Centres of mass

When finding a centre of mass

1. Choose a suitable strip, or element.

2. Find the mass of this strip, or element — this will involve 6x or dy or oz.

3. For the mass you may recognise the shape etc., or you will need M =), m;.
Let ox or 8y or &z — 0, and the 2 becomes an I .

4. You will then need Y m;x;. Let X or &y or & — 0, and the X becomes an I .

- _ X mix; X mix;
xm;

6. You may be able to write down the value of one or more coordinate using the

symmetry of the figure.

, and similarly for y and Z.

Centre of mass of a lamina

Example: A uniform lamina is bounded
by the parabola y* = x and the line x = 4,
and has density p.
By symmetry y = 0.
We find the mass of the lamina, M

M= 2p f:ﬁ dx

o] - 2

To find X, we first choose an element
with constant X co-ordinate throughout.

Take a strip parallel to the y-axis, a distance of X; from the X-axis and width &x.
This strip is approximately a rectangle of length 2y; and width &k

= mass of typical strip =m; = 2yip X

= omix; = Xg2y;px; 6x
y=+/x and we let X — 0

4

=  Y&2ypx; 6x — f042px3/z dx = E pxs/z] - ?p
0

gty 3,12y

M 5 3 5
= centre of mass of the lamina is at (2.4, 0).
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Example: A uniform lamina is bounded by the x- and y-axes and the part of the curve

Solution:  The figure shows the lamina 1

1)

2)

3)

26

. 1 . . .
y = cos X for which 0 < x < P Find the coordinates of its centre of mass.

y
y = COS X

and a typical strip of width ox and
height cos X.

To find the mass.

M =pf0”/2cosx dx

— lsinal /2 =
plsinx],'“=p

TN

To find x

mass of typical strip =m; = Yip X
= ZZ/Z mix; = ZZ/Z yipx; 6x
y=cos X and we let X > 0

Vs s 1
= ZO/Zmixi - pJ, /2 x cosx dx =p(5m-1) integrating by parts

T 1

_ Zo/z mx; PG D

: x: = =
M p

n—1

N | =

To find y we can use the same strips, because the centre of mass of each strip is
. 1 .
approximately S Vi from the x-axis.

mass of typical strip =m; = yjp KX
7T/z,,,v”/z. 1.5

= Z:0 myy; = 20 )’LPXZyl X

y=cos X and we let X — 0

T 1 7 1
= 20/2 m;y; — 2P fo /2 cos?x dx = 3P any fool can do this integral

s E
_ X "muyi _ gl 1
M p 8

=

. 1 1
= centre of mass is at (En -1, gn)
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Example: A uniform lamina occupies the closed region bounded by the curve y = v2 — x

Solution: 1+

1)

2)

3)

and the x- and y-axes. Find the coordinates of its centre of mass.

y

To find the mass, M.

The area = area of triangle + area under curve

= M =p(%><1><1 + ffm dx) =£p which I am too lazy to do!
To find y.

The typical strip is approximately a rectangle of length X, — X; and height dy.

The mass of the strip is m; = p (X2 — X;)Jy.

But x, =2 —y* (lies on the curve y =2 — x), and x; =y (lies ony =X)

= mi=pQ2-y’ -y

= Xomyi = Toyip X 2-Y¢ -y

1 5
Asdy -0, Yimy, — fo yp X (2-y* —y)dy = P you ought to do this one!
__Z(%miYi _ 5p/12 5
= y= = 572 = —
M /e 14
To find X.
The centre of mass of the typical strip is % (X + X;) from the y-axis mid-point of strip

and m;= p (Xo — X;)dy as before

= Nmx; = 5§p (- x)dy X5 (6 +X)

But (X2 —X1) (2 + X)) =X =% = 2-y)’ -y’ = 4-5y° +y*
and the limits go from 0 to 1 because of the dy.

= Imx = Shsp@4-5y +yh &

11 19
As & -0, Ymx; > | Sp(4-5y* +yHdy=p oh, goody!
o g ZmN Phs _3s
M Pl 35

. 5
= the centre of mass is at (ﬁ —).

35’ 14
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Standard results for centre of mass of uniform laminas and arcs

. 2 .
Triangle 3 of the way along the median, from the vertex.
.. . 4 .
Semi-circle, radius r é from centre, along axis of symmetry
. . 2rsina .
Sector of circle, radius r, angle 2a o from centre, along axis of symmetry

rsin

. . a .
Circular arc, radius r, angle 2o — from centre, along axis of symmetry

Centres of mass of compound laminas

The secret is to form a table showing the mass, or mass ratio, and position of the centre of mass

— mix; — miyi
for each component. Then use x = z 1\/; ~ y= Ly

body.

to find the centre of the compound

Example: A semi-circle of radius r is cut out from a uniform semi-circle of radius 2r. Find
the position of the centre of mass of the resulting shape.

A

Solution:

By symmetry the centre of mass will lie on the axis of
symmetry, OA.

The mass of the compound shape is

M= @rr-zr)p =§ i p

and the centre of mass of a semi-circle
. 4r
is o from the centre.

Lamina compound shape +  small semi-circle = large semi-circle
3 1
Mass Eﬂ'rzp Eﬂr2p 27rr2p
: 4r 8r
Distance from O g — —
3n 3n
3 2 1 2 4r 2 8r
= - 7rpx + -arpx— = 2nrpx—
2 pP*9 2 PX PX 3
28
= g=-—r

: : . 28
The centre of mass lies on the axis of symmetry, at a distance of 57 from the centre.
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Centre of mass of a solid of revolution
Example: A machine component has the shape of a uniform solid of revolution formed by

rotating the region under the curve y =+v9 — x for which x > 0 about the X-axis. Find the
position of the centre of mass.

Solution: y

Mass, M, of the solid = pf09 ry?dx= p fog 7(9-x) dx
=M = %prr.

The diagram shows a typical thin disc of thickness & and radius y =+/9 — x.
— Mass of disc = pzy*&k = pr(9 —X) &

All points in the disc have approximately the same X-coordinate

=Ymx; = 23 P (9 —x;)x; O

As X = 0, Ymx; — fogpﬁ(9—x)x dx = z;ﬁpn
B 243p1'[/2
=X = Slp”/z =3

By symmetry, y =0
= the centre of mass is on the X-axis, at a distance of 3 from the origin.

There are many more examples in the book, but the basic principle remains the same:
e find the mass of the shape, M
e choose, carefully, a typical element, and find its mass (involving ox or dy)
e find Y m;x; or Y m;y;
e let o or oy — 0, and find the value of the resulting integral

Lmx; y:Zmiyi
M’ M

e X =
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Standard results for centre of mass of uniform bodies

Solid hemisphere, radius r 3;1* from centre, along axis of symmetry
Hemispherical shell, radius r g from centre, along axis of symmetry
Solid right circular cone, height h % from vertex, along axis of symmetry
Conical shell, height h % from vertex, along axis of symmetry

Centres of mass of compound bodies

This is very similar to the technique for compound laminas.

Example: A solid hemisphere of radius a is placed on a solid cylinder of height 2a. Both
objects are made from the same uniform material. Find the position of the centre of mass

of the compound body.

Solution: A
By symmetry the centre of mass will lie on the axis xG a
of symmetry.

------------------ e
The mass of the hemisphere is g za’p, and the o |
mass of the cylinder is za’ x 2ap =2x a3p xG
= mass of the compound shape is ;
M = gﬂffp, xGy | 2a
0G,=2, and 0G,=a g
v
Now draw up a table
Body hemisphere + cylinder = compound body
Mass g 72'&3,0 27ra3p g 7ra3p
Distance above O — —-a y
2 3 3 _ 3 —
= FFAPX — + 2rapx(-a) = -zmapxy
v = 21
= y=—50

. 21 .
= centre of mass is at G, below O, where OG = 37 & on the axis of symmetry.
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Tilting and hanging freely

Tilting
Example: The compound body of the previous example is placed on a slope which makes an
angle @ with the horizontal. The slope is sufficiently rough to prevent sliding. For what

range of values of & will the body remain
in equilibrium.

Solution:  The body will be on the point of
tipping when the centre of mass, G, lies
vertically above the lowest corner, A.

. 21
Centre of mass is 2a — 32 a

43
=54 from the base

At this point

a 32
tan ¢ =@ -
/32 43

= 0 =36.65610842

The body will remain in equilibrium for

0 < 36.7° to the nearest 0.1°.

Hanging freely under gravity

This was covered in M2. For a body hanging freely from a point A, you should always state
that AG is vertical — this is the only piece of mechanics in the question!
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Hemisphere in equilibrium on a slope

Example:

A uniform hemisphere rests in equilibrium on a slope which makes an angle of

20° with the horizontal. The slope is sufficiently rough to prevent the hemisphere from
sliding. Find the angle made by the flat surface of the hemisphere with the horizontal.

Solution:  Don’t forget the basics.

32

The centre of mass, G, must be vertically
above the point of contact, A. If it was
not, there would be a non-zero moment
about A and the hemisphere would not be
in equilibrium.

BGA is a vertical line, so we want the
angle 6.

OA must be perpendicular to the slope
(radius 1 tangent), and with all the 90°
angles around A, ZOAG = 20°.

Let a be the radius of the hemisphere

3 . .
then OG = ?a and, using the sine rule

sinZ0GA __ sin20
a 3a/8

Clearly ZOGA is obtuse = ZOGA=114.209...
= Z0BG =114.209... — 90 = 24.209...

= 6 = 90-24.209...

= ZOGA=65.790....

or 114.209...

65.8° to the nearest 0.1°.
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v dv/dx, 3
xdv/dt, 3
Angular velocity, 16
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solids of revolution, 29
standard results for laminas and arcs, 28
standard results for uniform bodies, 30
tilting bodies, 31
Force
impulse of variable force, 9
varying with speed, 4
Gravitation
link between G and g, 11
Newton's law, 11
Hooke’s Law
elastic strings, 5
energy stored in a string or spring, 7

springs, 5

14/04/2013 Mechanics 3 SDB

Impulse
variable force, 9
Motion in a circle
acceleration towards centre, 16
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vertical circles, 20
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asin @t and acos wt, 13
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basic equation, 13
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