M1 Essentials: Summary of AQA Mechanics 1 content not provided in the formula book

iviecnanics terminology		
Particle	Rigid Body	
Mass, but no size	Mass and size, does not deform	
Rough/Smooth	Elastic/Inelastic	
Friction present/not	Deforms/does not deform	
Light	Plane	
No mass	Flat surface (eg, a slope)	

Machanica tarminalam

Vectors & scalars

Vector	Scalar
Displacement	Distance (m)
Velocity	Speed (ms^{-1})
Acceleration	(Magnitude of) acceleration (ms^{-2})
Force	(Magnitude of) force (N)
N/A	Mass (kg)
N/A	Time (s)

Displacement, velocity and acceleration are all vector quantities. In 1 dimensional problems, direction is given as +ve or -ve. In 2 dimensional problems, direction is defined by the vector.

Equilibrium

A particle in equilibrium has constant velocity (could be at rest), and has a resultant force of 0N acting on it (forces are balanced).

Friction

Friction always acts in the opposite direction to motion or potential motion.

Always true	In motion, or in limiting equilibrium
$F_r \leq \mu R$	$F_r = \mu R$

Newton's second law **Projectiles** *F*: *resultant force* (*N*) Horizontal: Vertical: $F = ma \quad m: mass(kg)$ a = -9.8v constant $v = \frac{x}{x}$ a: acceleration (ms^{-2}) SUVAT equations

Momentum Conservation of momentum: $m_1u + m_2u = m_1v + m_2v$

Displacement-Time Velocity-Time Displacement = HeightDisplacement = AreaVelocity = GradientVelocity = Height*Acceleration* = *Gradient*

Graphs of motion

SUVAT equations (constant acceleration equations)

s = displacement(m)	v = u + at
$u = initial \ velocity \ (ms^{-1})$	$v^2 = u^2 + 2as$ $u + v$
$v = final \ velocity \ (ms^{-1})$	$s = \frac{u + v}{2}t$
$a = acceleration (ms^{-2})$	² 1
t = time(s)	$s = ut + \frac{1}{2}at^2$

Manipulating vectors

Resolving a vector

 $\begin{bmatrix} a \\ b \end{bmatrix} \pm \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a \pm c \\ b \pm d \end{bmatrix}$ $k \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ka \\ kb \end{bmatrix}$ $\begin{bmatrix} a \\ b \end{bmatrix} = \sqrt{a^2 + b^2}$

Kinematics in 2 dimensions

Eg. A force *F* acting at θ° to the horizontal:

 $F \cos \theta$ horizontally, $F \sin \theta$ vertically: $F = \begin{bmatrix} F \cos \theta \\ F \sin \theta \end{bmatrix}$