M1 Essentials: Summary of AQA Mechanics 1 content not provided in the formula book

Mechanics terminology

Particle	Rigid Body
Mass, but no size	Mass and size, does not deform
Rough/Smooth	Elastic/Inelastic
Friction present/not	Deforms/does not deform
Light	Plane
No mass	Flat surface (eg, a slope)

Vectors \& scalars

Vector	Scalar
Displacement	Distance (m)
Velocity	Speed $\left(\mathrm{ms}^{-1}\right)$
Acceleration	(Magnitude of) acceleration $\left(\mathrm{ms}^{-2}\right)$
Force	(Magnitude of) force (N)
N/A	Mass (kg)
N/A	Time (s)

Graphs of motion

Displacement-Time	Velocity-Time
Displacement $=$ Height	Displacement $=$ Area
Velocity $=$ Gradient	Velocity $=$ Height
	Acceleration $=$ Gradient

SUVAT equations (constant acceleration equations)

$s=$ displacement (m)
$u=$ initial velocity $\left(\mathrm{ms}^{-1}\right)$
$v=$ final velocity $\left(m s^{-1}\right)$
$a=$ acceleration (ms^{-2})
$t=$ time (s)

$$
\begin{aligned}
& v=u+a t \\
& v^{2}=u^{2}+2 a s \\
& s=\frac{u+v}{2} t \\
& s=u t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Manipulating vectors

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \pm\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
a \pm c \\
b \pm d
\end{array}\right] \quad k\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
k a \\
k b
\end{array}\right] \quad\left|\left[\begin{array}{l}
a \\
b
\end{array}\right]\right|=\sqrt{a^{2}+b^{2}}
$$

Resolving a vector

Eg. A force F acting at θ° to the horizontal:
$F \cos \theta$ horizontally, $F \sin \theta$ vertically: $\quad \boldsymbol{F}=\left[\begin{array}{l}F \cos \theta \\ F \sin \theta\end{array}\right]$

Kinematics in 2 dimensions

Displacement, velocity and acceleration are all vector quantities. In 1 dimensional problems, direction is given as $+v e$ or $-v e$. In 2 dimensional problems, direction is defined by the vector.

Equilibrium

A particle in equilibrium has constant velocity (could be at rest), and has a resultant force of 0 N acting on it (forces are balanced).

Friction

Friction always acts in the opposite direction to motion or potential motion.

Always true	In motion, or in limiting equilibrium
$F_{r} \leq \mu R$	$F_{r}=\mu R$

\[

\]

Momentum

Conservation of momentum: $m_{1} u+m_{2} u=m_{1} v+m_{2} v$

