

EDEXCEL STUDENT CONFERENCE 2006

AS MATHEMATICS

STUDENT NOTES

South: Thursday 23rd March 2006, London

EXAMINATION HINTS

Before the examination

- Dobtain a copy of the formulae book and use it!
- Write a list of and LEARN any formulae not in the formulae book
- Learn basic definitions
- Make sure you know how to use your calculator!
- Practise all the past papers TO TIME!

At the start of the examination

- A Read the instructions on the front of the question paper and/or answer booklet
- NOpen your formulae book at the relevant page

During the examination

- $\ensuremath{\mathfrak{B}}$ Read the WHOLE question before you start your answer
- ⁽¹⁾ Start each question on a new page (traditionally marked papers) or
- ⁽²⁾ Make sure you write your answer within the space given for the question (on-line marked papers)
- ① Draw clear well-labelled diagrams
- ^(b) Look for clues or key words given in the question
- ⁽¹⁾ Show ALL your working including intermediate stages
- ② Write down formulae before substituting numbers
- ^(S) Make sure you finish a 'prove' or a 'show' question quote the end result
- Don't fudge your answers (particularly if the answer is given)!
- ⁽¹⁾ Don't round your answers prematurely
- ⁽¹⁾ Make sure you give your final answers to the required/appropriate degree of accuracy
- ⁽¹⁾ Check details at the end of every question (e.g. particular form, exact answer)
- ^(b) Take note of the part marks given in the question
- ⁽²⁾ If your solution is becoming very lengthy, check the original details given in the question
- [®] If the question says "hence" make sure you use the previous parts in your answer
- ^(I) Don't write in pencil (except for diagrams) or red ink
- Write legibly!
- ② Keep going through the paper go back over questions at the end if time

At the end of the examination

If you have used supplementary paper, fill in all the boxes at the top of every page

C1 KEY POINTS

C1 Algebra and functions

Surds (i)
$$\sqrt{xy} = \sqrt{x} \times \sqrt{y}$$
 (ii) $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$ (iii) $a\sqrt{x} \pm b\sqrt{x} = (a \pm b)\sqrt{x}$
N.B. In general $\sqrt{x \pm y} \neq \sqrt{x} \pm \sqrt{y}$

Rationalising Given $\frac{1}{\sqrt{a}}$, multiply by $\frac{\sqrt{a}}{\sqrt{a}}$. Given $\frac{1}{a \pm \sqrt{b}}$, multiply by $\frac{a \mp \sqrt{b}}{a \mp \sqrt{b}}$

Indices 1. $a^m \times a^n = a^{m+n}$ 2. $\frac{a^m}{a^n} = a^{m-n}$ 3. $(a^m)^n = a^{mn}$ 4. $a^0 = 1$ 5. $a^{-n} = \frac{1}{a^n}$ 6. $a^{\frac{1}{n}} = \sqrt[n]{a}$ 7. $a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$

Quadratic functions If $f(x) = ax^2 + bx + c$, the discriminant is $b^2 - 4ac$ For f(x) = 0, $b^2 - 4ac > 0 \implies$ two real, distinct roots, $b^2 - 4ac = 0 \implies$ two real, equal roots, $b^2 - 4ac < 0 \implies$ two unreal roots

Factorising, completing the square, using the formula

If
$$f(x) = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sketching quadratic functions

(a) To find the point of intersection with the y-axis: put x = 0 in y = f(x)

(b) To find the points of intersection with the x-axis: solve f(x) = 0

(c) To find the maximum/minimum point: use completing the square, symmetry or solve f'(x) = 0 [This latter method uses C2 techniques]

Other curves: reciprocal
$$\left(y = \frac{1}{x}\right)$$
, cubics

Expanding brackets, collecting like tems, factorising Simultaneous equations (including one linear and one quadratic) Linear and quadratic inequalities

Transformation		Description
$y = \mathbf{f}(x) + a$	<i>a</i> > 0	Translation of $y = f(x)$ through $\begin{pmatrix} 0 \\ a \end{pmatrix}$
$y = \mathbf{f}(x + a)$	<i>a</i> > 0	Translation of $y = f(x)$ through $\begin{pmatrix} -a \\ 0 \end{pmatrix}$
y = af(x)	<i>a</i> > 0	Stretch of $y = f(x)$ parallel to y-axis with scale factor <i>a</i>
y = f(ax)	<i>a</i> > 0	Stretch of $y = f(x)$ parallel to <i>x</i> -axis with scale factor $\frac{1}{a}$

C1 Coordinate geometry $P(x_1, y_1)$ and $Q(x_2, y_2)$

Gradient of $PQ = \frac{y_2 - y_1}{x_2 - x_1}$

Distance
$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Equation of a straight line

(i) Given the gradient, m and the vertical intercept (0, c): y = mx + c(ii) Given a point $P(x_1, y_1)$ on the line and the gradient, m: $y - y_1 = m(x - x_1)$ $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$

(iii) Given two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on the line:

Mid-point of
$$PQ = M \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Gradient of line l_1 is m_1 , gradient of line l_2 is m_2 If line l_1 is parallel to line l_2 , then $m_1 = m_2$ If line l_1 is perpendicular to line l_2 , then $m_1 \times m_2 = -1$

C1 Sequences and Series

Sigma notation, e.g. $\sum_{r=1}^{4} (2r+5) = 7+9+11+13$

 $u_{n+1} = 3u_n + 5$, $n \ge 1$, $u_1 = -2$ The first 5 terms of this sequence are -2, -1, 2, 11 and 38

An arithmetic series is a series in which each term is obtained from the previous term by adding a constant called the common difference, d*n*th term = a + (n - 1)d

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} [a+l]$ where last term $l = a + (n-1)d$

Sum of the first *n* natural numbers: 1 + 2 + 3 + 4 + ... + n: $S_n = \frac{n}{2}(n+1)$

C1 Differentiation

If y = f(x) then $\frac{dy}{dx} = f'(x)$ and $\frac{d^2y}{dx^2} = f''(x)$ Notation: $\frac{\frac{-}{dx}}{anx^{n-1}}$ (*a* is constant) y

$$f(x) \pm g(x) \qquad \qquad f'(x) \pm g'(x)$$

Equation of tangents and normals: Use the following facts:

(a) Gradient of a tangent to a curve = $\frac{dy}{dx}$

(b) The normal to a curve at a particular point is perpendicular to the tangent at that point

- (c) If two perpendicular lines have gradients m_1 and m_2 then $m_1 \times m_2 = -1$
- (d) The equation of a line through (x_1, y_1) with gradient *m* is $y y_1 = m(x x_1)$

C1 Integration

$$\int ax^{n} dx = \frac{ax^{n+1}}{n+1} + c \text{ provided } n \neq -1 \qquad \int (f'(x) + g'(x)) dx = f(x) + g(x) + c$$

C2 KEY POINTS

C2 Algebra and functions

Algebraic division by $(x \pm a)$ Remainder theorem: When f(x) is divided by (x - a), f(x) = (x - a)Q(x) + R where Q(x) is the quotient and R is the remainder Factor theorem: If f(a) = 0 then (x - a) is a factor of f(x)

C2 Coordinate geometry

Circle, centre (0, 0) radius $r: x^2 + y^2 = r^2$ Circle centre (a, b) radius $r: (x - a)^2 + (y - b)^2 = r^2$ Useful circle facts: The angle between the tangent and the radius is 90° Tangents drawn from a common point to a circle are equal in length The centre of a circle is on the perpendicular bisector of any chord The angle subtended by a diameter at the circumference is 90°

C2 Sequences and Series

A geometric series is a series in which each term is obtained from the previous term by multiplying by a constant called the common ratio, r

*n*th term = ar^{n-1} , $S_n = \frac{a(1-r^n)}{1-r}$, $S_{\infty} = \frac{a}{1-r}$ where |r| < 1.

The following expansions are valid for all $n \in N$:

$$(a+b)^{n} = a^{n} + {}^{n}C_{1}a^{n-1}b + {}^{n}C_{2}a^{n-1}b^{2} + \dots + {}^{n}C_{r}a^{n-r}b^{r} + \dots + b^{n}$$

$$(1+x)^{n} = 1 + nx + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{r}x^{r} + \dots + x^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!} + \dots + x^{n}$$

where ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

C2 Trigonometry

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ and ambiguous case Cosine rule $a^2 = b^2 + c^2 - 2bc\cos A$ or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ Area of $\Delta ABC = \frac{1}{2}ab\sin C$ $\sin x^\circ = \cos(90 - x)^\circ$, $\cos x^\circ = \sin(90 - x)^\circ$, $\tan x^\circ = \frac{1}{\tan(90^\circ - x)}$ Graphs of trigonometric functions $\sin(-x) = -\sin x$, $\cos(-x) = \cos x$, $\tan(-x) = \tan x$ $\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$, $\cos 30^\circ = \sin 60^\circ = \frac{\sqrt{3}}{2}$, $\tan 30^\circ = \frac{1}{\sqrt{3}}$, $\tan 60^\circ = \sqrt{3}$ $\cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}}$, $\tan 45^\circ = 1$ Degrees | $360^\circ \ 180^\circ \ 90^\circ \ 45^\circ \ 60^\circ \ 30^\circ \ 270^\circ \ 120^\circ \ 135^\circ$ etc

 Degrees
 360° 180° 90° 45° 60° 30° 270° 120° 135°

 Radians
 2π π $\frac{\pi}{2}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{6}$ $\frac{3\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$

Arc length = $r\theta$, Area of sector = $\frac{1}{2}r^2\theta$ (θ in radians)

$$(180 - \theta)^{\circ} \qquad \theta$$

$$S \qquad A$$

$$T \qquad C$$

$$(180 + \theta)^{\circ} \qquad (360 - \theta)^{\circ}$$

$$\cos^{2}\theta + \sin^{2}\theta = 1, \quad \tan\theta = \frac{\sin\theta}{\cos\theta}$$

C2 Exponentials and Logarithms

If $y = a^x$ then $\log_a y = x$

Laws of logarithms: $\log_a pq = \log_a p + \log_a q$, $\log_a \frac{p}{q} = \log_a p - \log_a q$, $\log_a x^n = n \cdot \log_a x$ Other useful results: $\log_a x = \frac{\log_b x}{\log_a a}$, $\log_a 1 = 0$, $\log_a a = 1$

f: $x \rightarrow a^x$ $x \in \mathbf{R}$ a > 0 (*a* is constant) is an exponential function, e.g. 7^{2x+4}

Solve equations of the form $a^x = b$

C2 Differentiation

If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} > 0$ the stationary point is a minimum turning point If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$ the stationary point is a maximum turning point

For an increasing function, $\frac{dy}{dx} > 0$, for a decreasing function, $\frac{dy}{dx} < 0$

Maxima and minima problems: (a) Find the point at which f'(x) = 0. (b) Find the nature of the turning point to confirm that the value is a maximum or minimum as required. (c) Make sure that all parts of the question have been answered (e.g. finding the maximum/minimum as well as the value of *x* at which it occurs).

C2 Integration

If
$$\int f(x) dx = F(x) + c$$
 then $\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$

If y > 0 for $a \le x \le b$, then area is given by $A = \int_{a}^{b} y \, dx$

Trapezium rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h[y_0 + y_n + 2(y_1 + \dots + y_{n-1})] \quad \text{where } y_i = f(a + ih) \text{ and } h = \frac{b - a}{n}$$