EDEXCEL STUDENT CONFERENCE 2006

AS MATHEMATICS

STUDENT NOTES

EXAMINATION HINTS

Before the examination

(1) Obtain a copy of the formulae book - and use it!
(1) Write a list of and LEARN any formulae not in the formulae book
[a] Learn basic definitions
(1] Make sure you know how to use your calculator!
[1] Practise all the past papers - TO TIME!

At the start of the examination

Read the instructions on the front of the question paper and/or answer booklet
Open your formulae book at the relevant page

During the examination

(c) Read the WHOLE question before you start your answer
(1) Start each question on a new page (traditionally marked papers) or
(2) Make sure you write your answer within the space given for the question (on-line marked papers)
(1) Draw clear well-labelled diagrams
(L) Look for clues or key words given in the question
(1) Show ALL your working - including intermediate stages
(1) Write down formulae before substituting numbers
(2) Make sure you finish a 'prove' or a 'show' question - quote the end result
(ㄱ) Don’t fudge your answers (particularly if the answer is given)!
(1) Don't round your answers prematurely
(1) Make sure you give your final answers to the required/appropriate degree of accuracy
(1) Check details at the end of every question (e.g. particular form, exact answer)
(2) Take note of the part marks given in the question
(2) If your solution is becoming very lengthy, check the original details given in the question
(2) If the question says "hence" make sure you use the previous parts in your answer
(1) Don't write in pencil (except for diagrams) or red ink
(ㄷ) Write legibly!
(1) Keep going through the paper - go back over questions at the end if time

At the end of the examination

氟 If you have used supplementary paper, fill in all the boxes at the top of every page

C1 KEY POINTS

C1 Algebra and functions

Surds (i) $\quad \sqrt{x y}=\sqrt{x} \times \sqrt{y}$
(ii) $\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}$
(iii) $a \sqrt{x} \pm b \sqrt{x}=(a \pm b) \sqrt{x}$
N.B. In general $\sqrt{x \pm y} \neq \sqrt{x} \pm \sqrt{y}$

Rationalising Given $\frac{1}{\sqrt{a}}$, multiply by $\frac{\sqrt{a}}{\sqrt{a}}$. Given $\frac{1}{a \pm \sqrt{b}}$, multiply by $\frac{a \mp \sqrt{b}}{a \mp \sqrt{b}}$

Indices 1. $a^{m} \times a^{n}=a^{m+n}$
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$
3. $\left(a^{m}\right)^{n}=a^{m n}$
4. $a^{0}=1$
5. $a^{-n}=\frac{1}{a^{n}}$
6. $a^{\frac{1}{n}}=\sqrt[n]{a}$
7. $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

Quadratic functions If $\mathrm{f}(x)=a x^{2}+b x+c$, the discriminant is $b^{2}-4 a c$
For $\mathrm{f}(x)=0, b^{2}-4 a c>0 \Rightarrow$ two real, distinct roots, $b^{2}-4 a c=0 \Rightarrow$ two real, equal roots, $b^{2}-4 a c<0 \Rightarrow$ two unreal roots
Factorising, completing the square, using the formula
If $\mathrm{f}(x)=0$, then $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Sketching quadratic functions
(a) To find the point of intersection with the y-axis: put $x=0$ in $y=\mathrm{f}(x)$
(b) To find the points of intersection with the x-axis: solve $\mathrm{f}(x)=0$
(c) To find the maximum/minimum point: use completing the square, symmetry or solve $\mathrm{f}^{\prime}(x)=0$ [This latter method uses C2 techniques]

Other curves: reciprocal $\left(y=\frac{1}{x}\right)$, cubics
Expanding brackets, collecting like tems, factorising
Simultaneous equations (including one linear and one quadratic)
Linear and quadratic inequalities

Transformation	Description	
$y=\mathrm{f}(x)+a$	$a>0$	Translation of $y=\mathrm{f}(x)$ through $\binom{0}{a}$
$y=\mathrm{f}(x+a)$	$a>0$	Translation of $y=\mathrm{f}(x)$ through $\binom{-a}{0}$
$y=a \mathrm{f}(x)$	$a>0$	Stretch of $y=\mathrm{f}(x)$ parallel to y-axis with scale factor a
$y=\mathrm{f}(a x)$	$a>0$	Stretch of $y=\mathrm{f}(x)$ parallel to x-axis with scale factor $\frac{1}{a}$

C1 Coordinate geometry $\quad P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$
Gradient of $P Q=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Distance $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Equation of a straight line
(i) Given the gradient, m and the vertical intercept ($0, c$):
$y=m x+c$
(ii) Given a point $P\left(x_{1}, y_{1}\right)$ on the line and the gradient, m :
$y-y_{1}=m\left(x-x_{1}\right)$
(iii) Given two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ on the line:

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

Mid-point of $P Q \quad M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Gradient of line l_{1} is m_{1}, gradient of line l_{2} is m_{2}
If line l_{1} is parallel to line l_{2}, then $m_{1}=m_{2}$
If line l_{1} is perpendicular to line l_{2}, then $m_{1} \times m_{2}=-1$

C1 Sequences and Series

Sigma notation, e.g. $\sum_{r=1}^{4}(2 r+5)=7+9+11+13$
$u_{n+1}=3 u_{n}+5, \quad n \geq 1, u_{1}=-2 \quad$ The first 5 terms of this sequence are $-2,-1,2,11$ and 38
An arithmetic series is a series in which each term is obtained from the previous term by adding a constant called the common difference, d
nth term $=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$ or $S_{n}=\frac{n}{2}[a+l]$ where last term $l=a+(n-1) d$
Sum of the first n natural numbers: $1+2+3+4+\ldots+n: \quad S_{n}=\frac{n}{2}(n+1)$

C1 Differentiation

Notation: If $y=\mathrm{f}(x)$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}^{\prime}(x)$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{f}^{\prime \prime}(x)$

y	$\frac{\mathrm{~d} y}{\mathrm{~d} x}$
$a x^{n}$	$a n x^{n-1} \quad(a$ is constant $)$
$\mathrm{f}(x) \pm \mathrm{g}(x)$	$\mathrm{f}^{\prime}(x) \pm \mathrm{g}^{\prime}(x)$

Equation of tangents and normals: Use the following facts:
(a) Gradient of a tangent to a curve $=\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) The normal to a curve at a particular point is perpendicular to the tangent at that point
(c) If two perpendicular lines have gradients m_{1} and m_{2} then $m_{1} \times m_{2}=-1$
(d) The equation of a line through $\left(x_{1}, y_{1}\right)$ with gradient m is $y-y_{1}=m\left(x-x_{1}\right)$

C1 Integration

$\int a x^{n} \mathrm{~d} x=\frac{a x^{n+1}}{n+1}+c \quad$ provided $n \neq-1 \quad \int\left(\mathrm{f}^{\prime}(x)+\mathrm{g}^{\prime}(x)\right) \mathrm{d} x=\mathrm{f}(x)+\mathrm{g}(x)+c$

C2 KEY POINTS

C2 Algebra and functions

Algebraic division by $(x \pm a)$
Remainder theorem: When $\mathrm{f}(x)$ is divided by $(x-a), \quad \mathrm{f}(x)=(x-a) Q(x)+R \quad$ where $Q(x)$ is the quotient and R is the remainder
Factor theorem: If $\mathrm{f}(a)=0$ then $(x-a)$ is a factor of $\mathrm{f}(x)$
C2 Coordinate geometry
Circle, centre $(0,0)$ radius $r: x^{2}+y^{2}=r^{2}$
Circle centre (a, b) radius $r:(x-a)^{2}+(y-b)^{2}=r^{2}$
Useful circle facts:
The angle between the tangent and the radius is 90°
Tangents drawn from a common point to a circle are equal in length
The centre of a circle is on the perpendicular bisector of any chord
The angle subtended by a diameter at the circumference is 90°

C2 Sequences and Series

A geometric series is a series in which each term is obtained from the previous term by multiplying by a constant called the common ratio, r
nth term $=a r^{n-1}, \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \quad S_{\infty}=\frac{a}{1-r}$ where $|r|<1$.
The following expansions are valid for all $n \in \mathrm{~N}$:
$(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-1} b^{2}+\ldots+{ }^{n} C_{r} a^{n-r} b^{r}+\ldots+b^{n}$
$(1+x)^{n}=1+n x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{r} x^{r}+\ldots+x^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!}+\ldots+x^{n}$
where ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$

C2 Trigonometry

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad$ and ambiguous case
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
Area of $\triangle A B C=1 / 2 a b s i n C$
$\sin x^{\circ}=\cos (90-x)^{\circ}, \cos x^{\circ}=\sin (90-x)^{\circ}, \tan x^{\circ}=\frac{1}{\tan \left(90^{\circ}-x\right)}$
Graphs of trigonometric functions
$\sin (-x)=-\sin x, \cos (-x)=\cos x, \tan (-x)=\tan x$
$\sin 30^{\circ}=\cos 60^{\circ}=1 / 2, \cos 30^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}, \tan 30^{\circ}=\frac{1}{\sqrt{3}}, \tan 60^{\circ}=\sqrt{3}$
$\cos 45^{\circ}=\sin 45^{\circ}=\frac{1}{\sqrt{2}}, \tan 45^{\circ}=1$

Degrees	360°	180°	90°	45°	60°	30°	270°	120°	135°	etc
Radians	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{3 \pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	

Arc length $=r \theta$, Area of sector $=1 / 2 r^{2} \theta$ (θ in radians)

$$
\begin{array}{c|c}
(180-\theta)^{\circ} & \theta^{\circ} \\
\mathrm{S} & \mathrm{~A} \\
\hline \mathrm{~T} & \mathrm{C} \\
(180+\theta)^{\circ} & (360-\theta)^{\circ} \\
\cos ^{2} \theta+\sin ^{2} \theta=1, \quad \tan \theta=\frac{\sin \theta}{\cos \theta}
\end{array}
$$

C2 Exponentials and Logarithms

If $y=a^{x}$ then $\log _{a} y=x$
Laws of ${\operatorname{logarithms:~} \log _{a} p q=\log _{a} p+\log _{a} q, \quad \log _{a} \frac{p}{q}=\log _{a} p-\log _{a} q, \log _{a} x^{n}=n \cdot \log _{a} x}$
Other useful results: $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}, \quad \log _{a} 1=0, \quad \log _{a} a=1$
f: $x \rightarrow a^{x} \quad x \in \mathrm{R} a>0$ (a is constant)
is an exponential function, e.g. $7^{2 x+4}$

Solve equations of the form $a^{x}=b$

C2 Differentiation

If $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ the stationary point is a minimum turning point
If $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}<0$ the stationary point is a maximum turning point
For an increasing function, $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$, for a decreasing function, $\frac{\mathrm{d} y}{\mathrm{~d} x}<0$
Maxima and minima problems: (a) Find the point at which $\mathrm{f}^{\prime}(x)=0$. (b) Find the nature of the turning point to confirm that the value is a maximum or minimum as required. (c) Make sure that all parts of the question have been answered (e.g. finding the maximum/minimum as well as the value of x at which it occurs).

C2 Integration

If $\int \mathrm{f}(x) \mathrm{d} x=\mathrm{F}(x)+c$ then $\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x=[\mathrm{F}(x)]_{a}^{b}=\mathrm{F}(b)-\mathrm{F}(a)$
If $y>0$ for $a \leq x \leq b$, then area is given by $A=\int_{a}^{b} y \mathrm{~d} x$
Trapezium rule

$$
\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x \approx \frac{1}{2} h\left[y_{0}+y_{n}+2\left(y_{1}+\ldots+y_{n-1}\right)\right] \quad \text { where } y_{i}=\mathrm{f}(a+i h) \text { and } h=\frac{b-a}{n}
$$

