

Trigonometric

 Identities and

 Identities and}

Equations

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { I know what secant; cosecant and cotangent graphs look like and can } \\ \text { identify appropriate restricted domains. }\end{array} & \\ \hline & \text { I know and can use the relationship between secant and cosine. }\end{array}\right]$

Mr A Slack

1. (a) Given that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that $1+\tan ^{2} \theta \equiv \sec ^{2} \theta$.
(b) Solve, for $0 \leq \theta<360^{\circ}$, the equation

$$
2 \tan ^{2} \theta+\sec \theta=1
$$

giving your answers to 1 decimal place.
2. (a) By writing $\sin 3 \theta$ as $\sin (2 \theta+\theta)$, show that

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \tag{5}
\end{equation*}
$$

(b) Given that $\sin \theta=\frac{\sqrt{ } 3}{4}$, find the exact value of $\sin 3 \theta$.
3. (a) Using $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that the $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta \equiv 1$.
(b) Hence, or otherwise, prove that

$$
\begin{equation*}
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta \equiv \operatorname{cosec}^{2} \theta+\cot ^{2} \theta \tag{2}
\end{equation*}
$$

(c) Solve, for $90^{\circ}<\theta<180^{\circ}$,

$$
\begin{equation*}
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta=2-\cot \theta \tag{6}
\end{equation*}
$$

4. (a) Given that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that $1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta$.
(b) Solve, for $0 \leq \theta<180^{\circ}$, the equation

$$
2 \cot ^{2} \theta-9 \operatorname{cosec} \theta=3
$$

giving your answers to 1 decimal place.

Mr A Slack

5. (a) Show that
(i) $\frac{\cos 2 x}{\cos x+\sin x} \equiv \cos x-\sin x, \quad x \neq\left(n-\frac{1}{4}\right) \pi, n \in \mathbb{Z}$,
(ii) $\frac{1}{2}(\cos 2 x-\sin 2 x) \equiv \cos ^{2} x-\cos x \sin x-\frac{1}{2}$.
(b) Hence, or otherwise, show that the equation

$$
\cos \theta\left(\frac{\cos 2 \theta}{\cos \theta+\sin \theta}\right)=\frac{1}{2}
$$

can be written as

$$
\begin{equation*}
\sin 2 \theta=\cos 2 \theta \tag{3}
\end{equation*}
$$

(c) Solve, for $0 \leq \theta<2 \pi$,

$$
\sin 2 \theta=\cos 2 \theta
$$

giving your answers in terms of π.
6. (a) Given that $\cos A=\frac{3}{4}$, where $270^{\circ}<A<360^{\circ}$, find the exact value of $\sin 2 A$.
(b) (i) Show that $\cos \left(2 x+\frac{\pi}{3}\right)+\cos \left(2 x-\frac{\pi}{3}\right) \equiv \cos 2 x$.

Given that

$$
y=3 \sin ^{2} x+\cos \left(2 x+\frac{\pi}{3}\right)+\cos \left(2 x-\frac{\pi}{3}\right)
$$

(ii) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin 2 x$.

Mr A Slack

7. (i) Prove that

$$
\begin{equation*}
\sec ^{2} x-\operatorname{cosec}^{2} x \equiv \tan ^{2} x-\cot ^{2} x \tag{3}
\end{equation*}
$$

(ii) Given that

$$
y=\arccos x, \quad-1 \leq x \leq 1 \quad \text { and } \quad 0 \leq y \leq \pi,
$$

(a) express $\arcsin x$ in terms of y.
(b) Hence evaluate $\arccos x+\arcsin x$. Give your answer in terms of π.
8. (i) Without using a calculator, find the exact value of

$$
\left(\sin 22.5^{\circ}+\cos 22.5^{\circ}\right)^{2}
$$

You must show each stage of your working.
(ii) (a) Show that $\cos 2 \theta+\sin \theta=1$ may be written in the form

$$
\begin{equation*}
k \sin ^{2} \theta-\sin \theta=0, \text { stating the value of } k \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq \theta<360^{\circ}$, the equation

$$
\begin{equation*}
\cos 2 \theta+\sin \theta=1 \tag{4}
\end{equation*}
$$

9. (a) Prove that

$$
\begin{equation*}
\frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}=\tan \theta, \quad \theta \neq 90 n^{\circ}, \quad n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

(b) Hence, or otherwise,
(i) show that $\tan 15^{\circ}=2-\sqrt{ } 3$,
(ii) solve, for $0<x<360^{\circ}$,

$$
\begin{equation*}
\operatorname{cosec} 4 x-\cot 4 x=1 \tag{5}
\end{equation*}
$$

Differentiation

Mr A Slack

1. (a) Differentiate with respect to x
(i) $3 \sin ^{2} x+\sec 2 x$,
(ii) $\{x+\ln (2 x)\}^{3}$.

Given that $y=\frac{5 x^{2}-10 x+9}{(x-1)^{2}}, x \neq 1$,
(b) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{8}{(x-1)^{3}}$.
2. Differentiate, with respect to x,
(a) $\mathrm{e}^{3 x}+\ln 2 x$,
(b) $\left(5+x^{2}\right)^{\frac{3}{2}}$.
3. (a) Differentiate with respect to x
(i) $x^{2} \mathrm{e}^{3 x+2}$,
(ii) $\frac{\cos \left(2 x^{3}\right)}{3 x}$.
(b) Given that $x=4 \sin (2 y+6)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.

Mr A Slack

4. The point P lies on the curve with equation $y=\ln \left(\frac{1}{3} x\right)$. The x-coordinate of P is 3 .

Find an equation of the normal to the curve at the point P in the form $y=a x+b$, where a and b are constants.
4. The curve C has equation $x=2 \sin y$.
(a) Show that the point $P\left(\sqrt{ } 2, \frac{\pi}{4}\right)$ lies on C.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{ } 2}$ at P.
(c) Find an equation of the normal to C at P. Give your answer in the form $y=m x+c$, where m and c are exact constants.
5. (i) The curve C has equation $y=\frac{x}{9+x^{2}}$.

Use calculus to find the coordinates of the turning points of C.
(ii) Given that $y=\left(1+e^{2 x}\right)^{\frac{3}{2}}$, find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=\frac{1}{2} \ln 3$.

Mr A Slack

6. A curve C has equation

$$
y=\mathrm{e}^{2 x} \tan x, \quad x \neq(2 n+1) \frac{\pi}{2} .
$$

(a) Show that the turning points on C occur where $\tan x=-1$.
(b) Find an equation of the tangent to C at the point where $x=0$.
7. (a) Differentiate with respect to x,
(i) $\mathrm{e}^{3 x}(\sin x+2 \cos x)$,
(ii) $x^{3} \ln (5 x+2)$.

Given that $y=\frac{3 x^{2}+6 x-7}{(x+1)^{2}}, x \neq-1$,
(b) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{20}{(x+1)^{3}}$.
(c) Hence find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and the real values of x for which $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{15}{4}$.
8. The curve C has equation

$$
y=(2 x-3)^{5}
$$

The point P lies on C and has coordinates $(w,-32)$.
Find
(a) the value of w,
(b) the equation of the tangent to C at the point P in the form $y=m x+c$, where m and c are constants.

Mr A Slack

9. (i) Differentiate with respect to x
(a) $y=x^{3} \ln 2 x$,
(b) $y=(x+\sin 2 x)^{3}$.

Given that $x=\cot y$,
(ii) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-1}{1+x^{2}}$.
10. Differentiate with respect to x
(a) $\ln \left(x^{2}+3 x+5\right)$,
(b) $\frac{\cos x}{x^{2}}$.

Mr A Slack

Algebraic Fractions

Mr A Slack

1. Express

$$
\frac{2 x^{2}+3 x}{(2 x+3)(x-2)}-\frac{6}{x^{2}-x-2}
$$

as a single fraction in its simplest form.
2. (a) Simplify $\frac{3 x^{2}-x-2}{x^{2}-1}$.
(b) Hence, or otherwise, express $\frac{3 x^{2}-x-2}{x^{2}-1}-\frac{1}{x(x+1)}$ as a single fraction in its simplest form.
3. Given that

$$
\frac{2 x^{4}-3 x^{2}+x+1}{\left(x^{2}-1\right)} \equiv\left(a x^{2}+b x+c\right)+\frac{d x+e}{\left(x^{2}-1\right)}
$$

find the values of the constants a, b, c, d and e.
4.

$$
\mathrm{f}(x)=1-\frac{3}{x+2}+\frac{3}{(x+2)^{2}}, \quad x \neq-2 .
$$

(a) Show that $\mathrm{f}(x)=\frac{x^{2}+x+1}{(x+2)^{2}}, x \neq-2$.
(b) Show that $x^{2}+x+1>0$ for all values of x.
(c) Show that $\mathrm{f}(x)>0$ for all values of $x, x \neq-2$.

Mr A Slack

5. $\mathrm{h}(x)=\frac{2}{x+2}+\frac{4}{x^{2}+5}-\frac{18}{\left(x^{2}+5\right)(x+2)}, \quad x \geq 0$.
(a) Show that $\mathrm{h}(x)=\frac{2 x}{x^{2}+5}$.
(b) Hence, or otherwise, find $\mathrm{h}^{\prime}(x)$ in its simplest form.
(3)

Figure 2
Figure 2 shows a graph of the curve with equation $y=h(x)$.
(c) Calculate the range of $\mathrm{h}(x)$.
6. $\mathrm{f}(x)=\frac{4 x-5}{(2 x+1)(x-3)}-\frac{2 x}{x^{2}-9}, \quad x \neq \pm 3, x \neq-\frac{1}{2}$.
(a) Show that

$$
\begin{equation*}
\mathrm{f}(x)=\frac{5}{(2 x+1)(x+3)} \tag{5}
\end{equation*}
$$

The curve C has equation $y=\mathrm{f}(x)$. The point $P\left(-1,-\frac{5}{2}\right)$ lies on C.
(b) Find an equation of the normal to C at P.

Functions

$\begin{aligned} & \frac{\mathbf{Q}}{\mathbf{\alpha}} \end{aligned}$	I know the definition of a function and how it may be notated.	
	I know the meaning of 'one-to-one' and 'many-to-one' functions.	
	I understand and can use the "domain" of a function.	
	I understand and can use the "range" of a function.	
	I can work with composite functions.	
	I can find the inverse of a function.	
	I can draw the graph of an inverse function.	

Mr A Slack

1. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{5 x+1}{x^{2}+x-2}-\frac{3}{x+2}, x>1 .
$$

(a) Show that $\mathrm{f}(x)=\frac{2}{x-1}, x>1$.
(b) Find $\mathrm{f}^{-1}(x)$.

The function g is defined by

$$
\mathrm{g}: x \mapsto x^{2}+5, \quad x \in \mathbb{R}
$$

(b) Solve $\operatorname{fg}(x)=\frac{1}{4}$.
2. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto 2 x+\ln 2, & x \in \mathbb{R}, \\
\mathrm{~g}: x \mapsto \mathrm{e}^{2 x}, & x \in \mathbb{R} .
\end{array}
$$

(a) Prove that the composite function gf is

$$
\begin{equation*}
\text { gf: } x \mapsto 4 \mathrm{e}^{4 x}, \quad x \in \mathbb{R} \tag{4}
\end{equation*}
$$

(b) Sketch the curve with equation $y=\operatorname{gf}(x)$, and show the coordinates of the point where the curve cuts the y-axis.
(c) Write down the range of gf.
(d) Find the value of x for which $\frac{\mathrm{d}}{\mathrm{d} x}[\operatorname{gf}(x)]=3$, giving your answer to 3 significant figures.

Mr A Slack

3. The function f is defined by

$$
\mathrm{f}: x \mapsto \ln (4-2 x), \quad x<2 \text { and } x \in \mathbb{R} .
$$

(a) Show that the inverse function of f is defined by

$$
\mathrm{f}^{-1}: x \mapsto 2-\frac{1}{2} \mathrm{e}^{x}
$$

and write down the domain of f^{-1}.
(b) Write down the range of f^{-1}.
(c) Sketch the graph of $y=\mathrm{f}^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes.

The graph of $y=x+2$ crosses the graph of $y=\mathrm{f}^{-1}(x)$ at $x=k$.
The iterative formula

$$
x_{n+1}=-\frac{1}{2} \mathrm{e}^{x_{n}}, \quad x_{0}=-0.3,
$$

is used to find an approximate value for k.
(d) Calculate the values of x_{1} and x_{2}, giving your answer to 4 decimal places.
(e) Find the values of k to 3 decimal places.

Mr A Slack

4. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 1-2 x^{3}, \quad x \in \mathbb{R} . \\
& \mathrm{g}: x \mapsto \frac{3}{x}-4, \quad x>0, \quad x \in \mathbb{R} .
\end{aligned}
$$

(a) Find the inverse function f^{-1}.
(b) Show that the composite function gf is

$$
\begin{equation*}
\text { gf : } x \mapsto \frac{8 x^{3}-1}{1-2 x^{3}} . \tag{4}
\end{equation*}
$$

(c) Solve gf $(x)=0$.
(d) Use calculus to find the coordinates of the stationary point on the graph of $y=\operatorname{gf}(x)$.
5. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{2(x-1)}{x^{2}-2 x-3}-\frac{1}{x-3}, \quad x>3
$$

(a) Show that $\mathrm{f}(x)=\frac{1}{x+1}, x>3$.
(b) Find the range of f .
(c) Find $\mathrm{f}^{-1}(x)$. State the domain of this inverse function.

The function g is defined by

$$
\mathrm{g}: x \mapsto 2 x^{2}-3, \quad x \in \mathbb{R}
$$

(d) Solve $\mathrm{fg}(x)=\frac{1}{8}$.

Mr A Slack

6. The function f is defined by

$$
\mathrm{f}: x \mapsto 4-\ln (x+2), \quad x \in \mathbb{R}, \quad x \geq-1 .
$$

(a) Find $\mathrm{f}^{-1}(x)$.
(b) Find the domain of f^{-1}.

The function g is defined by

$$
\mathrm{g}: x \mapsto \mathrm{e}^{x^{2}}-2, \quad x \in \mathbb{R} .
$$

(c) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.
(d) Find the range of fg .

Iteration

	I can identify the location of roots of $f(x)=0$ by considering a change of sign of $f(x)$.
	I can find an approximate solution to an equation using simple iterative methods including relations of the form $x_{n+1}=f\left(x_{n}\right)$.

Mr A Slack

1.

$$
\mathrm{f}(x)=3 \mathrm{e}^{x}-\frac{1}{2} \ln x-2, \quad x>0
$$

(a) Differentiate to find $\mathrm{f}^{\prime}(x)$.

The curve with equation $y=\mathrm{f}(x)$ has a turning point at P. The x-coordinate of P is α.
(b) Show that $\alpha=\frac{1}{6} \mathrm{e}^{-\alpha}$.

The iterative formula

$$
x_{n+1}=\frac{1}{6} \mathrm{e}^{-x_{n}}, \quad x_{0}=1,
$$

is used to find an approximate value for α.
(c) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 decimal places.
(d) By considering the change of sign of $\mathrm{f}^{\prime}(x)$ in a suitable interval, prove that $\alpha=0.1443$ correct to 4 decimal places.
2.

$$
\mathrm{f}(x)=2 x^{3}-x-4
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{2}{x}+\frac{1}{2}\right)} \tag{3}
\end{equation*}
$$

The equation $2 x^{3}-x-4=0$ has a root between 1.35 and 1.4.
(b) Use the iteration formula

$$
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{1}{2}\right)}
$$

with $x_{0}=1.35$, to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.

The only real root of $\mathrm{f}(x)=0$ is α.
(c) By choosing a suitable interval, prove that $\alpha=1.392$, to 3 decimal places.

Figure 2

Figure 2 shows part of the curve with equation

$$
y=(2 x-1) \tan 2 x, \quad 0 \leq x<\frac{\pi}{4} .
$$

The curve has a minimum at the point P. The x-coordinate of P is k.
(a) Show that k satisfies the equation

$$
\begin{equation*}
4 k+\sin 4 k-2=0 . \tag{6}
\end{equation*}
$$

The iterative formula

$$
x_{n+1}=\frac{1}{4}\left(2-\sin 4 x_{n}\right), \quad x_{0}=0.3 \text {, }
$$

is used to find an approximate value for k.
(b) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 decimals places.
(c) Show that $k=0.277$, correct to 3 significant figures.

Mr A Slack

4.

$$
\mathrm{f}(x)=\ln (x+2)-x+1, \quad x>-2, x \in \mathbb{R} .
$$

(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $2<x<3$.
(b) Use the iterative formula

$$
x_{n+1}=\ln \left(x_{n}+2\right)+1, \quad x_{0}=2.5
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $x=2.505$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
5.

$$
\mathrm{f}(x)=3 x^{3}-2 x-6 .
$$

(a) Show that $\mathrm{f}(x)=0$ has a root, α, between $x=1.4$ and $x=1.45$.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{2}{x}+\frac{2}{3}\right)}, \quad x \neq 0 \tag{3}
\end{equation*}
$$

(c) Starting with $x_{0}=1.43$, use the iteration

$$
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{2}{3}\right)}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
(d) By choosing a suitable interval, show that $\alpha=1.435$ is correct to 3 decimal places.

Mr A Slack

6.

$$
\mathrm{g}(x)=\mathrm{e}^{x-1}+x-6
$$

(a) Show that the equation $\mathrm{g}(x)=0$ can be written as

$$
\begin{equation*}
x=\ln (6-x)+1, \quad x<6 . \tag{2}
\end{equation*}
$$

The root of $\mathrm{g}(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2 .
$$

is used to find an approximate value for α.
(b) Calculate the values of x_{1}, x_{2} and x_{3} to 4 decimal places.
(c) By choosing a suitable interval, show that $\alpha=2.307$ correct to 3 decimal places.
7.

$$
\mathrm{f}(x)=2 \sin \left(x^{2}\right)+x-2, \quad 0 \leq x<2 \pi .
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=0.75$ and $x=0.85$.

The equation $\mathrm{f}(x)=0$ can be written as $x=[\arcsin (1-0.5 x)]^{\frac{1}{2}}$.
(b) Use the iterative formula

$$
x_{n+1}=\left[\arcsin \left(1-0.5 x_{n}\right)\right]^{\frac{1}{2}}, \quad x_{0}=0.8
$$

to find the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $\alpha=0.80157$ is correct to 5 decimal places.

$\operatorname{Rsin}(\theta \pm a)$

$\operatorname{Rcos}(\theta \pm a)$

Mr A Slack

1. (a) Using the identity $\cos (A+B) \equiv \cos A \cos B-\sin A \sin B$, prove that

$$
\begin{equation*}
\cos 2 A \equiv 1-2 \sin ^{2} A \tag{2}
\end{equation*}
$$

(b) Show that

$$
\begin{equation*}
2 \sin 2 \theta-3 \cos 2 \theta-3 \sin \theta+3 \equiv \sin \theta(4 \cos \theta+6 \sin \theta-3) . \tag{4}
\end{equation*}
$$

(c) Express $4 \cos \theta+6 \sin \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
(d) Hence, for $0 \leq \theta<\pi$, solve

$$
2 \sin 2 \theta=3(\cos 2 \theta+\sin \theta-1)
$$

giving your answers in radians to 3 significant figures, where appropriate.
2.

$$
\mathrm{f}(x)=12 \cos x-4 \sin x
$$

Given that $\mathrm{f}(x)=R \cos (x+\alpha)$, where $R \geq 0$ and $0 \leq \alpha \leq 90^{\circ}$,
(a) find the value of R and the value of α.
(b) Hence solve the equation

$$
12 \cos x-4 \sin x=7
$$

for $0 \leq x<360^{\circ}$, giving your answers to one decimal place.
(c) (i) Write down the minimum value of $12 \cos x-4 \sin x$.
(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

Mr A Slack

3.

Figure 1

Figure 1 shows an oscilloscope screen.
The curve on the screen satisfies the equation $y=\sqrt{ } 3 \cos x+\sin x$.
(a) Express the equation of the curve in the form $y=R \sin (x+\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(b) Find the values of $x, 0 \leq x<2 \pi$, for which $y=1$.

Mr A Slack

4. (a) Use the double angle formulae and the identity

$$
\cos (A+B) \equiv \cos A \cos B-\sin A \sin B
$$

to obtain an expression for $\cos 3 x$ in terms of powers of $\cos x$ only.
(b) (i) Prove that

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x} \equiv 2 \sec x, \quad x \neq(2 n+1) \frac{\pi}{2} . \tag{4}
\end{equation*}
$$

(ii) Hence find, for $0<x<2 \pi$, all the solutions of

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}=4 . \tag{3}
\end{equation*}
$$

5.

$$
\mathrm{f}(x)=5 \cos x+12 \sin x
$$

Given that $\mathrm{f}(x)=R \cos (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$,
(a) find the value of R and the value of α to 3 decimal places.
(b) Hence solve the equation

$$
5 \cos x+12 \sin x=6
$$

for $0 \leq x<2 \pi$.
(c) (i) Write down the maximum value of $5 \cos x+12 \sin x$.
(ii) Find the smallest positive value of x for which this maximum value occurs.

Mr A Slack

6. (a) Express $6 \cos \theta+8 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.

Give the value of α to 3 decimal places.
(4)
(b)

$$
\mathrm{p}(\theta)=\frac{4}{12+6 \cos \theta+8 \sin \theta}, \quad 0 \leq \theta \leq 2 \pi
$$

Calculate
(i) the maximum value of $\mathrm{p}(\theta)$,
(ii) the value of θ at which the maximum occurs.
7. (a) Express $2 \cos 3 x-3 \sin 3 x$ in the form $R \cos (3 x+\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give your answers to 3 significant figures.

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{e}^{2 x} \cos 3 x \tag{4}
\end{equation*}
$$

(b) Show that $\mathrm{f}^{\prime}(x)$ can be written in the form

$$
\mathrm{f}^{\prime}(x)=R \mathrm{e}^{2 x} \cos (3 x+\alpha),
$$

where R and α are the constants found in part (a).
(c) Hence, or otherwise, find the smallest positive value of x for which the curve with equation $y=\mathrm{f}(x)$ has a turning point.

Coordinate Geometry and

Transformations

n 0 0 0 0 4 0 0 0 0	I know how to sketch the graph of $y=\|f(x)\|$.	
	I know how to sketch the graph of $y=f(\|x\|)$.	
	I can use combinations of transformations of $y=f(x)$ such as af (x), $f(x)+a, f(x+a)$ and $y=f(a x)$.	
	I can identify x and y intercepts.	
	I can find normals and tangents.	

Mr A Slack

1.

Figure 1

Figure 1 shows part of the graph of $y=\mathrm{f}(x), x \in \mathbb{R}$. The graph consists of two line segments that meet at the point $(1, a), a<0$. One line meets the x-axis at $(3,0)$. The other line meets the x-axis at $(-1,0)$ and the y-axis at $(0, b), b<0$.

In separate diagrams, sketch the graph with equation
(a) $y=\mathrm{f}(x+1)$,
(b) $y=\mathrm{f}(|x|)$.

Indicate clearly on each sketch the coordinates of any points of intersection with the axes.
Given that $\mathrm{f}(x)=|x-1|-2$, find
(c) the value of a and the value of b,
(d) the value of x for which $\mathrm{f}(x)=5 x$.

Mr A Slack

2.

Figure 1 shows the graph of $y=\mathrm{f}(x),-5 \leq x \leq 5$.
The point $M(2,4)$ is the maximum turning point of the graph.
Sketch, on separate diagrams, the graphs of
(a) $y=\mathrm{f}(x)+3$,
(b) $y=|\mathrm{f}(x)|$,
(c) $y=\mathrm{f}(|x|)$.

Show on each graph the coordinates of any maximum turning points.
3.

Figure 1

Figure 1 shows part of the curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$, where f is an increasing function of x. The curve passes through the points $P(0,-2)$ and $Q(3,0)$ as shown.

In separate diagrams, sketch the curve with equation
(a) $y=|\mathrm{f}(x)|$,
(b) $y=\mathrm{f}^{-1}(x)$,
(c) $y=\frac{1}{2} \mathrm{f}(3 x)$.
(3)

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.
4.

$$
\mathrm{f}(x)=x^{4}-4 x-8
$$

(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $[-2,-1]$.
(b) Find the coordinates of the turning point on the graph of $y=\mathrm{f}(x)$.
(c) Given that $\mathrm{f}(x)=(x-2)\left(x^{3}+a x^{2}+b x+c\right)$, find the values of the constants a, b and c.
(d) Sketch the graph of $y=\mathrm{f}(x)$.
(e) Hence sketch the graph of $y=|\mathrm{f}(x)|$.

Mr A Slack

5. For the constant k, where $k>1$, the functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto \ln (x+k), \quad x>-k, \\
& \mathrm{~g}: x \mapsto|2 x-k|, \quad x \in \mathbb{R} .
\end{aligned}
$$

(a) On separate axes, sketch the graph of f and the graph of g .

On each sketch state, in terms of k, the coordinates of points where the graph meets the coordinate axes.
(b) Write down the range of f .
(c) Find $\mathrm{fg}\left(\frac{k}{4}\right)$ in terms of k, giving your answer in its simplest form.

The curve C has equation $y=\mathrm{f}(x)$. The tangent to C at the point with x-coordinate 3 is parallel to the line with equation $9 y=2 x+1$.
(d) Find the value of k.
6. A curve C has equation

$$
y=3 \sin 2 x+4 \cos 2 x, \quad-\pi \leq x \leq \pi .
$$

The point $A(0,4)$ lies on C.
(a) Find an equation of the normal to the curve C at A.
(b) Express y in the form $R \sin (2 x+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.

Give the value of α to 3 significant figures.
(c) Find the coordinates of the points of intersection of the curve C with the x-axis. Give your answers to 2 decimal places.

Mr A Slack

7.

Figure 1

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$.
The curve passes through the origin O and the points $A(5,4)$ and $B(-5,-4)$.
In separate diagrams, sketch the graph with equation
(a) $y=|\mathrm{f}(x)|$,
(b) $y=\mathrm{f}(|x|)$,
(c) $y=2 \mathrm{f}(x+1)$.

On each sketch, show the coordinates of the points corresponding to A and B.
8. The point P lies on the curve with equation

$$
y=4 \mathrm{e}^{2 x+1} .
$$

The y-coordinate of P is 8 .
(a) Find, in terms of $\ln 2$, the x-coordinate of P.
(b) Find the equation of the tangent to the curve at the point P in the form $y=a x+b$, where a and b are exact constants to be found.

Mr A Slack

9.

Figure 1

Figure 1 shows the graph of $y=\mathrm{f}(x), \quad x \in \mathbb{R}$,
The graph consists of two line segments that meet at the point P.
The graph cuts the y-axis at the point Q and the x-axis at the points $(-3,0)$ and R.
Sketch, on separate diagrams, the graphs of
(a) $y=|\mathrm{f}(x)|$,
(b) $y=\mathrm{f}(-x)$.

Given that $\mathrm{f}(x)=2-|x+1|$,
(c) find the coordinates of the points P, Q and R,
(d) solve $\mathrm{f}(x)=\frac{1}{2} x$.

Mr A Slack

10.

Figure 1

Figure 1 shows part of the curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$.
The curve passes through the points $Q(0,2)$ and $P(-3,0)$ as shown.
(a) Find the value of $\mathrm{ff}(-3)$.

On separate diagrams, sketch the curve with equation
(b) $y=\mathrm{f}^{-1}(x)$,
(c) $y=\mathrm{f}(|x|)-2$,
(d) $y=2 \mathrm{f}\left(\frac{1}{2} x\right)$.

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

Mr A Slack

11.

Figure 1

Figure 1 shows part of the graph of $y=\mathrm{f}(x), x \in \mathbb{R}$.
The graph consists of two line segments that meet at the point $R(4,-3)$, as shown in Figure 1.
Sketch, on separate diagrams, the graphs of
(a) $y=2 \mathrm{f}(x+4)$,
(b) $y=|\mathrm{f}(-x)|$.

On each diagram, show the coordinates of the point corresponding to R.

Exponential Equations

Mr A Slack

1. A particular species of orchid is being studied. The population p at time t years after the study started is assumed to be

$$
p=\frac{2800 a \mathrm{e}^{0.2 t}}{1+a \mathrm{e}^{0.2 t}}, \text { where } a \text { is a constant. }
$$

Given that there were 300 orchids when the study started,
(a) show that $a=0.12$,
(b) use the equation with $a=0.12$ to predict the number of years before the population of orchids reaches 1850 .
(c) Show that $p=\frac{336}{0.12+\mathrm{e}^{-0.2 t}}$.
(d) Hence show that the population cannot exceed 2800.
2. A heated metal ball is dropped into a liquid. As the ball cools, its temperature, $T^{\circ} \mathrm{C}, t$ minutes after it enters the liquid, is given by

$$
T=400 \mathrm{e}^{-0.05 t}+25, \quad t \geq 0
$$

(a) Find the temperature of the ball as it enters the liquid.
(b) Find the value of t for which $T=300$, giving your answer to 3 significant figures.
(c) Find the rate at which the temperature of the ball is decreasing at the instant when $t=50$. Give your answer in ${ }^{\circ} \mathrm{C}$ per minute to 3 significant figures.
(d) From the equation for temperature T in terms of t, given above, explain why the temperature of the ball can never fall to $20^{\circ} \mathrm{C}$.

Mr A Slack

3. The radioactive decay of a substance is given by

$$
R=1000 \mathrm{e}^{-c t}, \quad t \geq 0
$$

where R is the number of atoms at time t years and c is a positive constant.
(a) Find the number of atoms when the substance started to decay.

It takes 5730 years for half of the substance to decay.
(b) Find the value of c to 3 significant figures.
(c) Calculate the number of atoms that will be left when $t=22920$.
(d) Sketch the graph of R against t.
4. The value of Bob's car can be calculated from the formula

$$
V=17000 \mathrm{e}^{-0.25 t}+2000 \mathrm{e}^{-0.5 t}+500
$$

where V is the value of the car in pounds (£) and t is the age in years.
(a) Find the value of the car when $t=0$.
(b) Calculate the exact value of t when $V=9500$.
(c) Find the rate at which the value of the car is decreasing at the instant when $t=8$. Give your answer in pounds per year to the nearest pound.
5. The mass, m grams, of a leaf t days after it has been picked from a tree is given by

$$
m=p \mathrm{e}^{-k t},
$$

where k and p are positive constants.
When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.
(a) Write down the value of p.
(b) Show that $k=\frac{1}{4} \ln 3$.
(c) Find the value of t when $\frac{\mathrm{d} m}{\mathrm{~d} t}=-0.6 \ln 3$.

