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Brief 
 
 
This document is intended as an aid for revision.  Although it includes some examples 
and explanation, it is primarily not for learning content, but for becoming familiar 
with the requirements of the course as regards formulae and results.  It cannot 
replace the use of a text book, and nothing produces competence and familiarity with 
mathematical techniques like practice.  This document was produced as an addition 
to classroom teaching and textbook questions, to provide a summary of key points 
and, in particular, any formulae or results you are expected to know and use in this 
module.   
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Chapter 1 – Binomial series expansion 
 

(1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯     𝑓𝑜𝑟 |𝑥| < 1 

 
Note: This result can be found by considering the geometric series with first term 1 and common 
ratio 𝑥.  It is only valid for −1 < 𝑥 < 1 since the condition for 𝑆∞ to exist is that the common ratio 
|𝑟| < 1.   
 

In general, for |𝑥| < 1: 

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛 − 1)

1 × 2
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

1 × 2 × 3
𝑥3 + ⋯ 

 

Note: This formula is in the formula book, but is included here for completeness.   
 
Note: The alternative form of the binomial series expansion formula (also given in the formula 
book) is only valid for positive whole values of 𝑛.   
 

The binomial series expansion will have an infinite number of terms when 𝑛 is not a positive 
integer.   

 

The binomial series expansion will have a finite number of terms when 𝑛 is a positive integer, 
with the highest power of 𝑥 being 𝑥𝑛.   

 

The expansion of (1 + 𝑏𝑥)𝑛 is valid when |𝑏𝑥| < 1.  Equivalently, when |𝑥| <
1

|𝑏|
.   

 
Note: This result comes from the original expansion condition, replacing 𝑥 with 𝑏𝑥.   
 

The expansion of (𝑎 + 𝑥)𝑛 is valid when |𝑥| < 𝑎 for any positive constant 𝑎.   

 

To calculate the expansion of (𝑎 + 𝑥)𝑛, use (𝑎 + 𝑥)𝑛 = 𝑎𝑛 (1 +
𝑥

𝑎
)
𝑛

 

 
Eg: 
 

(4 + 2𝑥)
1
2 = 4

1
2 (1 +

𝑥

2
)

1
2

= 2(1 +
𝑥

2
)

1
2

= 2 [1 +
1

2
(
𝑥

2
) +

1
2 (−

1
2) (

𝑥
2)

2

2
+

1
2 (−

1
2) (−

3
2) (

𝑥
2)

3

3!
+ ⋯ ] 

 

≈ 𝟐 +
𝒙

𝟐
−

𝒙𝟐

𝟏𝟔
+

𝒙𝟑

𝟑𝟐
  𝒖𝒑 𝒕𝒐 𝒕𝒉𝒆 𝒇𝒐𝒖𝒓𝒕𝒉 𝒕𝒆𝒓𝒎 
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Chapter 2 – Rational functions and division of polynomials 
 

To simplify rational expressions: 
 
1. Factorise all algebraic expressions.   
2. Cancel any factors that are common to the numerator and denominator.   

 
Eg: 

𝑥2 + 𝑥 − 6

3𝑥2 − 12
=

(𝑥 + 3)(𝑥 − 2)

3(𝑥 + 2)(𝑥 − 2)
=

𝒙 + 𝟑

𝟑(𝒙 + 𝟐)
 

 

To multiply rational expressions: 
 
1. Factorise all algebraic expressions.   
2. Write as a single fraction.   
3. Cancel any factors that are common to the numerator and the denominator.   

 

To divide rational expressions: 
 
1. Convert the division to a multiplication of the reciprocal.   
2. Follow the instructions above.   

 
Eg: 

2𝑥 + 3

𝑥2 − 𝑥
÷

4𝑥2 − 9

(𝑥 − 1)2
=

2𝑥 + 3

𝑥2 − 𝑥
×

(𝑥 − 1)2

4𝑥2 − 9
 

 

=
(2𝑥 + 3)(𝑥 − 1)2

(𝑥2 − 𝑥)(4𝑥2 − 9)
=

(2𝑥 + 3)(𝑥 − 1)2

𝑥(𝑥 − 1)(2𝑥 + 3)(2𝑥 − 3)
=

𝒙 − 𝟏

𝒙(𝟐𝒙 − 𝟑)
 

 

To add or subtract rational expressions: 
 
1. Factorise all algebraic expressions.   
2. Write each rational expression with the same denominator.   
3. Add or subtract to get a single rational expression.   
4. Simplify and factorise the numerator.   
5. Cancel any factors common to the denominator and the numerator.   

 
Eg: 

1

𝑥 + 2
−

3

(𝑥 + 2)2
=

(𝑥 + 2) − 3

(𝑥 + 2)2
=

𝒙 − 𝟏

(𝒙 + 𝟐)𝟐
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𝑷(𝒙) = (𝒂𝒙 + 𝒃)𝑸(𝒙) + 𝑹 
 

𝑷(𝒙) is a polynomial (degree 𝑛). 
(𝒂𝒙 + 𝒃) is the divisor (degree 1). 

𝑸(𝒙) is the quotient (degree 𝑛 − 1). 
𝑹 is the remainder (degree 0). 

 
Eg: 

4𝑥3 − 3𝑥2 + 3𝑥 + 3 = (2𝑥 + 1)(2𝑥2 − 2.5𝑥 + 2.75) + 0.25 
 

When dividing a polynomial by a linear expression the remainder will be a constant and the 
quotient will always be one degree lower than the polynomial.   

 

To apply algebraic long division, first write the polynomial and divisor in descending powers of 𝑥, 
including any missing powers of 𝑥 with a 0 coefficient if necessary (as place-holders).   

 

The factor theorem can be extended for factors of the form (𝑎𝑥 + 𝑏): 
 

(𝑎𝑥 + 𝑏)   𝑖𝑠 𝑎 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑃(𝑥)    ⟺     𝑃 (−
𝑏

𝑎
) = 0 

 

More generally, the remainder theorem states that: 
 

𝐼𝑓 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑃(𝑥)𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 (𝑎𝑥 + 𝑏), 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑃 (−
𝑏

𝑎
) 

 
Eg: 
 

𝑊ℎ𝑒𝑛 6𝑥3 − 5𝑥2 + 2𝑥 + 5 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 (2𝑥 + 1) 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑖𝑠: 
 

𝑃 (−
1

2
) = 6 (−

1

2
)
3

− 5(−
1

2
)
2

+ 2(−
1

2
) + 5 = 𝟐 
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Chapter 3 – Partial fractions and applications 
 
Partial fractions is a technique for splitting up fractions, usually to allow a rational function to be 
integrated or for its binomial expansion to be calculated.   
 

Only proper fractions can be written as partial fractions.  If a fraction is improper (the degree of 
the top is not less than the degree of the bottom), it must first be split using division techniques 
from the previous chapter.   

 

It is necessary to use the correct form of partial fractions in order to correctly calculate terms.   
The following functions must be split as shown: 
 

𝑝(𝑥)

(𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)
=

𝐴

𝑥 − 𝑎
+

𝐵

𝑥 − 𝑏
+

𝐶

𝑥 − 𝑐
 

 
𝑞(𝑥)

(𝑥 − 𝑎)3
=

𝐴

𝑥 − 𝑎
+

𝐵

(𝑥 − 𝑎)2
+

𝐶

(𝑥 − 𝑎)3
 

 
Note: Usually in exam questions the form of the partial fractions will be provided (and as a result 
may well involve slightly different functions to the examples shown above).   
 

To find the unknown constants, first add the fractions from the right hand side to produce a fraction 
with the same denominator as the left.  Then either simplify the numerators and compare 
coefficients, or (usually more efficient) substitute chosen values of 𝑥 into the identity to eliminate 
constants.   

 
Eg: 

2𝑥

(𝑥 + 4)(2𝑥 − 1)2
≡

𝐴

𝑥 + 4
+

𝐵

2𝑥 − 1
+

𝐶

(2𝑥 − 1)2
 

 
2𝑥

(𝑥 + 4)(2𝑥 − 1)2
≡

𝐴(2𝑥 − 1)2

(𝑥 + 4)(2𝑥 − 1)2
+

𝐵(𝑥 + 4)(2𝑥 − 1)

(𝑥 + 4)(2𝑥 − 1)2
+

𝐶(𝑥 + 4)

(𝑥 + 4)(2𝑥 − 1)2
 

 
⟹     2𝑥 ≡ 𝐴(2𝑥 − 1)2 + 𝐵(𝑥 + 4)(2𝑥 − 1) + 𝐶(𝑥 + 4) 

𝑆𝑒𝑡 𝑥 = −4:   − 8 = 𝐴(−9)2     ⟹     𝐴 = −
8

81
 

𝑆𝑒𝑡 𝑥 =
1

2
:    1 =

9

2
𝐶    ⟹     𝐶 =

2

9
 

(𝑛𝑜 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 𝑒𝑥𝑖𝑠𝑡 𝑤ℎ𝑖𝑐ℎ 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒 𝐴 𝑎𝑛𝑑 𝐶 𝑏𝑢𝑡 𝑛𝑜𝑡 𝐵, 𝑠𝑜 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 𝑠𝑖𝑚𝑝𝑙𝑒 𝑛𝑒𝑥𝑡) 

𝑆𝑒𝑡 𝑥 = 0:    0 = 𝐴 − 4𝐵 + 4𝐶    ⟹    0 = −
8

81
− 4𝐵 +

8

9
    ⟹     𝐵 =

16

81
 

 

⟹    
2𝑥

(𝑥 + 4)(2𝑥 − 1)2
≡

−
8
81

𝑥 + 4
+

16
81

2𝑥 − 1
+

2
9

(2𝑥 − 1)2
 ≡ −

𝟖

𝟖𝟏(𝒙 + 𝟒)
+

𝟏𝟔

𝟖𝟏(𝟐𝒙 − 𝟏)
+

𝟐

𝟗(𝟐𝒙 − 𝟏)𝟐
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After splitting a rational function into partial fractions, it is often necessary to integrate.  The 
following two results are the most commonly used in this case: 
 

∫
1

𝑎𝑥 + 𝑏
𝑑𝑥 =

1

𝑎
ln|𝑎𝑥 + 𝑏| + 𝐶 

 

∫
1

(𝑎𝑥 + 𝑏)2
𝑑𝑥 = −

1

𝑎(𝑎𝑥 + 𝑏)
+ 𝐶 

 
Eg: 
 

∫
4𝑥2 + 3𝑥 + 3

(3𝑥 + 2)(𝑥 − 1)2
𝑑𝑥 = ∫

1

3𝑥 + 2
𝑑𝑥 + ∫

1

(𝑥 − 1)
𝑑𝑥 + ∫

2

(𝑥 − 1)2
𝑑𝑥 

(Note: result obtained by partial fractions – working omitted for the purposes of this example) 
 

=
𝟏

𝟑
𝐥𝐧|𝟑𝒙 + 𝟐| + 𝐥𝐧|𝒙 − 𝟏| −

𝟐

𝒙 − 𝟏
+ 𝑪 

 

Another common application of partial fractions is binomial expansion.  The following two 
common results are easily derived from the binomial formula (in the formula book), but may be 
useful to memorise in their own right: 
 

(1 + 𝑦)−1 = 1 − 𝑦 + 𝑦2 − 𝑦3 + 𝑦3 − ⋯   𝑣𝑎𝑙𝑖𝑑 𝑓𝑜𝑟 |𝑦| < 1 
 

(1 + 𝑦)−2 = 1 − 2𝑦 + 3𝑦2 − 4𝑦3 + ⋯   𝑣𝑎𝑙𝑖𝑑 𝑓𝑜𝑟 |𝑦| < 1 

 
 
 
Eg: 
 

𝑇ℎ𝑒 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑜𝑓:
2 + 3𝑥

(1 + 𝑥)(1 + 2𝑥)
 

 
2 + 3𝑥

(1 + 𝑥)(1 + 2𝑥)
=

1

1 + 𝑥
+

1

1 + 2𝑥
 

 
= (1 + 𝑥)−1 + (1 + 2𝑥)−1 = 1 − 𝑥 + 𝑥2 − ⋯+ 1 − (2𝑥) + (2𝑥)2 − ⋯ 

 
≈ 𝟐 − 𝟑𝒙 + 𝟓𝒙𝟑 
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Chapter 4 – Implicit differentiation and applications 
 

Most functions we have dealt with are explicitly defined (𝑦 in terms of 𝑥, for instance).  Sometimes a 
function is difficult or impossible to write as 𝑦 = 𝑓(𝑥), and so they are written implicitly.   

 
Eg: 

𝑥𝑦 − 𝑦3 = 𝑥2 + 3 
 

𝑑

𝑑𝑥
(𝑦𝑛) = 𝑛𝑦𝑛−1

𝑑𝑦

𝑑𝑥
 

 
𝑑

𝑑𝑥
(ln 𝑦) =

1

𝑦

𝑑𝑦

𝑑𝑥
 

 
𝑑

𝑑𝑥
(sin 𝑦) = cos 𝑦

𝑑𝑦

𝑑𝑥
 

 
𝑑

𝑑𝑥
[𝑓(𝑦)] = 𝑓′(𝑦)

𝑑𝑦

𝑑𝑥
    𝑤ℎ𝑒𝑟𝑒 𝑓′(𝑦) =

𝑑𝑓

𝑑𝑦
 

 
Note: Frequently techniques such as chain rule or product rule are required in conjunction with 
these rules.   
 
Eg: 

𝑥𝑦 − 𝑦3 = 𝑥2 + 3 
 

⟹     𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 − 3𝑦2

𝑑𝑦

𝑑𝑥
= 2𝑥 

 

If necessary, this can be rearranged to give 
𝑑𝑦

𝑑𝑥
: 

 
𝒅𝒚

𝒅𝒙
=

𝟐𝒙 − 𝒚

𝒙 − 𝟑𝒚𝟐
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Chapter 5 – Parametric equations for curves and differentiation 
 
Often functions can be expressed more simply and usefully in terms of a third variable.   
 

To find the gradient of a curve defined parametrically in terms of 𝑡, use: 
 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

 

 
Problems will usually involve a curve defined parametrically, using or finding specific points on the 
curve and finding the gradient (or identifying stationary points).   
 
Eg: 
 

𝑥 = 3 sin 𝑡           𝑦 = cos 𝑡           𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡 =
𝜋

4
 

 

𝑑𝑥

𝑑𝑡
= 3 cos 𝑡    

𝑑𝑦

𝑑𝑡
= −sin 𝑡     ⟹    

𝑑𝑦

𝑑𝑥
= −

sin 𝑡

3 cos 𝑡
= −

sin
𝜋
4

3 cos
𝜋
4

= −
1

3
tan

𝜋

4
= −

1

3
 

 

𝑥1 = 3 sin
𝜋

4
=

3√2

2
    𝑦1 = cos

𝜋

4
=

√2

2
    𝑚 = −

1

3
 

 

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1)    ⟹     𝑦 −
√2

2
= −

1

3
(𝑥 −

3√2

2
)     ⟹     𝒚 = −

𝒙

𝟑
+ √𝟐 

 

To find the Cartesian equation of a curve from its parametric equations, rearrange to eliminate 𝑡.   

 
Eg: 
 

𝑥 = 3 sin 𝑡           𝑦 = cos 𝑡     ⟹    (
𝑥

3
)
2

= sin2 𝑡     𝑦2 = cos2 𝑡 

 

⟹   
𝒙𝟐

𝟗
+ 𝒚𝟐 = 𝟏 
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Chapter 6 – Further trigonometry with integration 
 
Compound angle identities can be used to manipulate trigonometric functions with different input 
values.   
 
The six identities can be summarised as shown: 
 

sin(𝐴 ± 𝐵) = sin𝐴 cos 𝐵 ± cos𝐴 sin 𝐵 
 

cos(𝐴 ± 𝐵) = cos 𝐴 cos 𝐵 ∓ sin𝐴 sin𝐵 
 

tan(𝐴 ± 𝐵) =
tan𝐴 ± tan𝐵

1 ∓ tan𝐴 tan𝐵
,    [𝐴 ± 𝐵 ≠ (𝑘 +

1

2
)𝜋] 

 
Note: These results are in the formula book, so you are not required to learn them.  They are 
included here for the sake of completeness.   
 
You will need to know (or be able to derive from the formulae above) the double angle formulae: 
 

sin 2𝐴 = 2 sin𝐴 cos 𝐴 
 

cos 2𝐴 = cos2 𝐴 − sin2 𝐴 = 1 − 2 sin2 𝐴 = 2 cos2 𝐴 − 1 
 

tan 2𝐴 =
2 tan𝐴

1 − tan2 𝐴
 

 
Note: These can readily be derived from the 𝐴 ± 𝐵 formulae.   
 
Eg: 
 

sin(𝐴 ± 𝐵) = sin𝐴 cos 𝐵 ± cos𝐴 sin 𝐵 
 

𝐿𝑒𝑡 𝐴 = 𝐵    ⟹    sin(𝐴 + 𝐴) = sin𝐴 cos 𝐴 + cos 𝐴 sin𝐴 
 

⟹   sin 2𝐴 = 2 sin𝐴 cos 𝐴 
 

To integrate either sin2 𝑥 or cos2 𝑥 write in terms of cos 2𝑥.   

 
Note: The second and third versions of the cos 2𝐴 formula given above are derived from the first by 
using the identity sin2 𝐴 + cos2 𝐴 = 1.   
 
Eg: 
 

∫cos2 𝑥 𝑑𝑥 = ∫
cos 2𝑥 + 1

2
𝑑𝑥 =

𝟏

𝟒
𝐬𝐢𝐧𝟐𝒙 +

𝒙

𝟐
+ 𝑪 
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Functions of the form 𝑎 sin 𝜃 + 𝑏 cos 𝜃 can be written in the form 𝑅 sin(𝜃 ± 𝛼) or 𝑅 cos(𝜃 ± 𝛼).   

 

𝑅 = √𝑎2 + 𝑏2 

 
Note: There are formulae for calculating 𝛼 directly from 𝑎 and 𝑏, but since a change of sign on either 
the sin 𝜃 part, cos 𝜃 part or both will cause equivalent changes in the formulae, they are not 
included here.  The method described below allows for any variation of form, converting into any of 
the four varieties of simplified function.   
 

Step 1: Calculate 𝑅 using 𝑅2 = 𝑎2 + 𝑏2.   
Step 2: Choose a function to convert into: (𝑅 sin(𝜃 + 𝛼), 𝑅 sin(𝜃 − 𝛼), 𝑅 cos(𝜃 + 𝛼) or 𝑅 cos(𝜃 − 𝛼).   
Step 3: Expand this using the appropriate sin(𝐴 ± 𝐵) or cos(𝐴 ± 𝐵) formulae (in formula book).   
Step 4: Compare coefficients on the left and right sides of the identity and produce equations for 𝛼.   
Step 5: Solve for 𝛼, using non-primary solutions if necessary to ensure the value fits both equations.   

 
Eg: 
 
Write 3 sin 𝜃 − 2 cos 𝜃 in the form 𝑅 sin(𝜃 − 𝛼) 
 

𝑅 = √32 + (−2)2 = √13 
 

sin(𝐴 − 𝐵) = sin 𝐴 cos𝐵 − cos 𝐴 sin𝐵     ⟹    sin(𝜃 − 𝛼) = sin 𝜃 cos 𝛼 − cos 𝜃 sin 𝛼 
 

⟹    √13 sin(𝜃 − 𝛼) = √13(sin𝜃 cos 𝛼 − cos 𝜃 sin 𝛼) = 3 sin 𝜃 − 2 cos 𝜃 
 

⟹    √13 cos 𝛼 sin 𝜃 − √13 sin 𝛼 cos 𝜃 = 3 sin 𝜃 − 2 cos 𝜃 
 

⟹   cos 𝛼 =
3

√13
    𝑎𝑛𝑑   sin 𝛼 =

−2

−√13
=

2

√13
 

 
⟹     𝛼 = 33.7° 𝑡𝑜 1 𝑑. 𝑝. 

 

⟹     3 sin 𝜃 − 2 cos 𝜃 = √𝟏𝟑 𝐬𝐢𝐧(𝜽 − 𝟑𝟑. 𝟕°) 
 
Note: If the primary solutions to the two equations for 𝛼 do not match, you will need to look at 
secondary solutions.  Sketch the graph and look further afield.  There will always be a value for 𝛼 
that fits both equations, although it may be negative or obtuse.   
 
 

To solve an equation of the form 𝑎 sin 𝑥 + 𝑏 cos 𝑥 = 𝑐, first write 𝑎 sin 𝑥 + 𝑏 cos 𝑥 in the form 
𝑅 cos(𝑥 ± 𝛼) or 𝑅 sin(𝑥 ± 𝛼), then rearrange and solve for 𝑥.   
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Chapter 7 – Exponential growth and decay 

 
Many situations can be described by some variation of an exponential growth or decay function.  
You will need to be familiar with the key rules involving logarithms.   
 

𝑎𝑥 = 𝑏    ⟹    𝑥 =
ln 𝑏

ln 𝑎
 

 
Proof: 

𝑎𝑥 = 𝑏 
 

ln 𝑎𝑥 = ln 𝑏 
 

𝑥 ln 𝑎 = ln 𝑏 
(using the rule ln 𝑝𝑞 = 𝑞 ln 𝑝) 

 

𝒙 =
𝐥𝐧𝒃

𝐥𝐧𝒂
 

 

Note: This is equally valid using any other form of logarithm.  Eg,  
ln𝑏

ln𝑎
=

log10 𝑏

log10 𝑎
  .   

 

The formula 𝑥 = 𝑎 × 𝑏𝑘𝑡, where 𝑎, 𝑏 and 𝑘 are positive constants, indicates that 𝑥 is growing 
exponentially.   
The formula 𝑥 = 𝑎 × 𝑏−𝑘𝑡 indicates that 𝑥 is decaying exponentially.   

 

In general, 𝑥 = 𝐴𝑒𝑘𝑡     ⟹   
𝑑𝑥

𝑑𝑡
= 𝑘𝑥 

 
Proof: 

𝑥 = 𝐴𝑒𝑘𝑡     ⟹     
𝒅𝒙

𝒅𝒕
= 𝐴(𝑘𝑒𝑘𝑡) = 𝑘(𝐴𝑒𝑘𝑡) = 𝒌𝒙 

 

Conversely, 
𝑑𝑥

𝑑𝑡
= 𝑘𝑥    ⟹     𝑥 = 𝐴𝑒𝑘𝑡 

 
Proof: 

𝑑𝑥

𝑑𝑡
= 𝑘𝑥    ⟹    ∫

1

𝑥
𝑑𝑥 = ∫𝑘𝑑𝑡     ⟹     ln 𝑥 = 𝑘𝑡 + 𝐶 

 
⟹     𝒙 = 𝑒𝑘𝑡+𝐶 = 𝑒𝐶𝑒𝑘𝑡 = 𝑨𝒆𝒌𝒕 𝑓𝑜𝑟 𝐴 = 𝑒𝐶  

 
 
Note: The arbitrary constant 𝐴 in this formula represents the initial quantity or value (since when 
𝑡 = 0, 𝑒𝑘𝑡 = 1).  The 𝑘 determines the rate of increase or decrease.   
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Chapter 8 – Differential equations 

 

A differential equation is an equation which involves at least one derivative of a variable with 
respect to another variable.   

 
Eg: 

𝑑𝑦

𝑑𝑥
= 2𝑥 − 3    𝑜𝑟    𝑥

𝑑𝑥

𝑑𝑡
= 𝑒𝑡 sin 𝑥     𝑜𝑟   

𝑑2𝑚

𝑑𝑡2
+ 3

𝑑𝑚

𝑑𝑡
+ 4𝑚 = 𝑒𝑡  

 

A first order differential equation is one in which the highest order of derivative is the first.   

 
Eg: 

𝑑𝑦

𝑑𝑥
= 2𝑥4 + 3    𝑜𝑟   𝑥2

𝑑𝑥

𝑑𝑡
= ln 𝑡 

 
Note: We will be dealing only with first order differential equations in this module.   
 

Certain common statements involving derivatives need to be interpreted in the form of a 
differential equation: 
 

The rate of increase of 𝑥 is proportional to 𝑥:    
𝑑𝑥

𝑑𝑡
= 𝑘𝑥    𝑘 > 0 

 

The rate of decrease  of 𝑥 is proportional to 𝑥:    
𝑑𝑥

𝑑𝑡
= −𝑘𝑥    𝑘 > 0 

 
Note: These statements can be given in a variety of ways, so you will need to be able to recognise a 
number of different types.   
 
Eg: 
The volume of a snowball decreases at a rate proportional to its volume.   
 

𝑑𝑉

𝑑𝑡
= −𝑘𝑉 

 

The general solution of the first order differential equation 
𝑑𝑦

𝑑𝑥
= 𝑔(𝑥)ℎ(𝑦) is given by: 

∫
1

ℎ(𝑦)
𝑑𝑦 = ∫𝑔(𝑥)𝑑𝑥 + 𝐶    where 𝐶 is an arbitrary constant. 

 
Note: This method is known as the ‘Separation of Variables’ method, since it involves using division 
or multiplication to rearrange the differential equation so as to have all 𝑥 terms on the side of the 
𝑑𝑥 and all the 𝑦 terms on the side with the 𝑑𝑦.  To solve then it is necessary to be able to integrate 
each side (not necessarily straightforward; recall substitution, inspection and integration by parts).   
 
A particular solution is obtainable from the general solution by substituting in the values of a 
specific condition (eg 𝑉 = 4 at 𝑡 = 0), and solving to find the value of the arbitrary constant.   
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Chapter 9 – Vector equations of lines 
 

A vector is a quantity with a direction.  is represented by bold type such as 𝒗, with a line 

underneath, 𝑣 (easier for hand-written work), or, for a vector between two points, 𝐴𝐵⃗⃗⃗⃗  ⃗.   

 

The magnitude (or size) of the vector 𝐴𝐵⃗⃗⃗⃗  ⃗ is written |𝐴𝐵⃗⃗⃗⃗  ⃗| or occasionally just 𝐴𝐵.  The magnitude of 

𝒗 is written as |𝒗| or occasionally 𝑣.   

 

In two dimensions, the vector 𝒗 = [
𝑎
𝑏
] has component 𝑎 acting in the 𝑥 direction and component 𝑏 

acting in the 𝑦 direction.  For 3 dimensions, the third component acts in the 𝑧 direction.   

 

The vector between points 𝐴 and 𝐵 is denoted 𝐴𝐵⃗⃗⃗⃗  ⃗ and can be calculated from the position vectors 

of 𝐴 and 𝐵 (usually written as 𝑂𝐴⃗⃗⃗⃗  ⃗ and 𝑂𝐵⃗⃗ ⃗⃗  ⃗ respectively) as follows: 
 

𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝑂𝐵⃗⃗ ⃗⃗  ⃗ − 𝑂𝐴⃗⃗⃗⃗  ⃗ 

 
Eg: 

𝑃𝑜𝑖𝑛𝑡 𝐴: (2,3, −1)   𝑃𝑜𝑖𝑛𝑡 𝐵: (−5,0,2)    ⟹    𝑂𝐴⃗⃗ ⃗⃗  ⃗ = [
2
3

−1
]    𝑂𝐵⃗⃗ ⃗⃗  ⃗ = [

−5
0
2

] 

 

𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝑂𝐵⃗⃗ ⃗⃗  ⃗ − 𝑂𝐴⃗⃗⃗⃗  ⃗ = [
−5
0
2

] − [
2
3

−1
] = [

−𝟕
−𝟑
𝟑

] 

 

The magnitude of the 2D vector [
𝑎
𝑏
] and the 3D vector [

𝑎
𝑏
𝑐
] are given by: 

 

|[
𝑎
𝑏
]| = √𝑎2 + 𝑏2                     |[

𝑎
𝑏
𝑐
]| = √𝑎2 + 𝑏2 + 𝑐2 

 
Note: This is simply an application of Pythagoras’ theorem, and gives the length of the vector.   
 
Eg: 

|[
2

−2
1

]| = √22 + (−2)2 + 12 = √9 = 𝟑 

 

The results above can be combined to calculate the distance between two points (although this is 
easy enough to do in two separate steps):    The distance between  (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) is: 

|[

𝑥2 − 𝑥1

𝑦2 − 𝑦1 
𝑧2 − 𝑧1

]| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 
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A unit vector is a vector with a magnitude of 1.  A unit vector can be found with the same direction 
as any vector simply by dividing that vector by its magnitude.   

 
Note: The unit base vectors are 𝒊, 𝒋, 𝑎𝑛𝑑 𝒌: 
 

𝒊 = [
1
0
0
] , 𝒋 = [

0
1
0
] , 𝒌 = [

0
0
1
] 

 
Eg: 

𝐴 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 [
2

−2
1

]  𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦:   
1

√22 + (−2)2 + 12
[

2
−2
1

] =
1

3
[

2
−2
1

] = [

𝟐

𝟑

−
𝟐

𝟑
𝟏

𝟑

] 

 

The scalar product or dot product of two vectors is a method for multiplying two vectors together 
to produce a scalar.  The definition is given as: 
 

𝒂 ∙ 𝒃 = |𝒂||𝒃| cos 𝜃 
𝑤ℎ𝑒𝑟𝑒 𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

 

To calculate the dot product of two vectors is straight-forward in column form: 
 

[
𝑎
𝑏
𝑐
] ∙ [

𝑑
𝑒
𝑓
] = 𝑎𝑑 + 𝑏𝑒 + 𝑐𝑓 

 
Note: This result can be proven from the definition using the properties of the unit base vectors.   
 

The dot product is most commonly used to find the angle between two vectors.  Since this is the 
case, it can be more helpful to use the following version of the definition: 
 

𝒂 ∙ 𝒃

|𝒂||𝒃|
= cos 𝜃 

 
Eg: 

𝑇ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 [
−5
0
2

]  𝑎𝑛𝑑 [
2
3

−1
]  𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦:    [

−5
0
2

] ∙ [
2
3

−1
] = |[

−5
0
2

]| |[
2
3

−1
]| cos 𝜃 

 

⟹   −10 + 0 − 2 = √29√14 cos 𝜃     ⟹    cos 𝜃 = −
12

√29√14
    ⟹     𝜽 = 𝟏𝟐𝟔. 𝟔° 𝒕𝒐 𝟏 𝒅. 𝒑. 
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Provided 𝒂 and 𝒃 are non-zero vectors (zero vectors don’t have a specific direction): 
 

𝒂 ∙ 𝒃 = 0    ⟺     𝒂 𝑎𝑛𝑑 𝒃 𝑎𝑟𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 

 
Note: This is because perpendicular vectors are at 90°, giving cos 𝜃 = 0.   
 

The vector equation of a line is given in the form 𝒓 = 𝒂 + 𝜆𝒃 where 𝒂 is the position vector (any 
point on the line) and 𝒃 is the direction vector (any vector with the same direction as the line).   
 
An example might be: 

𝒓 = [
3
4
1
] + 𝜆 [

2
0

−7
] 

 

This goes through the point (3,4,1) and points in the direction of [
2
0

−7
] 

 
Note: Since any point on the line will suffice as a position vector and any scalar multiple of the 
direction vector will also point in the same direction, there is no limit to the number of different 
equations that could be produced for the same line.   
 

To find the point of intersection of two lines (if it exists), generate a general point for each, and 
set them equal to each other.  The solutions (if consistent) of the resulting three simultaneous 
equations for 𝜆 or 𝜇 will determine the point.   

 
Eg: 

𝐿1:    𝑟 = [
2
1
0
] + 𝜆 [

0
2
2
]    𝐿2:    𝑟 = [

1
2

−1
] + 𝜇 [

−2
−2
−6

] 

 

𝐿1 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑜𝑖𝑛𝑡:    [
2

1 + 2𝜆
2𝜆

]    𝐿2 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑜𝑖𝑛𝑡:    [
1 − 2𝜇
2 − 2𝜇

−1 − 6𝜇
] 

 

[
2

1 + 2𝜆
2𝜆

] = [
1 − 2𝜇
2 − 2𝜇

−1 − 6𝜇
]     ⟹    

2 = 1 − 2𝜇
1 + 2𝜆 = 2 − 2𝜇
2𝜆 = −1 − 6𝜇

    
⟹     𝜇 = −

1

2
−
−

    ⟹     𝜆 = 1 

 
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡    ⟹     𝒍𝒊𝒏𝒆𝒔 𝒊𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕 

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝜆 = 1 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝐿1 : [
𝟐
𝟑
𝟐
] 

(𝑁𝑜𝑡𝑒: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝜇 = −
1

2
 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝐿2) 
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The angle between two lines is defined to be the angle between their direction vectors.   

 
Eg: 
 
For the lines given above, the angle between would be found by applying the dot product formula to 

the vectors [
0
2
2
] and [

−2
−2
−6

].   

 

If two lines are parallel, their direction vectors will be scalar multiples of one another.  That is, one 
can be produced by multiplying each element of the other by a particular number.   

 

If two lines are neither parallel nor do they intersect, they are said to be skew.   

 
Note: It is, of course, not possible for a line in two dimensions to be skew.  To prove skewness, first 
show that the lines are not parallel (introduce a scalar variable to multiply by the direction vector 
and demonstrate that the resulting equations show a contradiction), then show that the lines do not 
intersect (by constructing simultaneous equations from the general points, as shown previously, 
and demonstrating that they produce a contradiction).   
 
Eg: 

𝑇𝑤𝑜 𝑙𝑖𝑛𝑒𝑠 ℎ𝑎𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 [
6
4
4
]  𝑎𝑛𝑑 [

−3
−2
2

] .  𝑃𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙.   

 

𝐼𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙:    [
6
4
4
] = 𝑎 [

−3
−2
2

]  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑎.   

 

⟹    
6 = −3𝑎
4 = −2𝑎
4 = 2𝑎

    ⟹    
𝑎 = −2
𝑎 = −2
𝑎 = 2

        𝑵𝒐𝒕 𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒕  ⟹   𝑵𝒐𝒕 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 

 
If it has already been demonstrated that these two lines do not intersect, these two results are 
sufficient to conclude the lines must be skew.   
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To find the shortest distance from a point to a line, the following steps must be followed: 
 
Step 1: Construct the general point of the line (note: this will involve a 𝜆 or 𝜇).   
Step 2: Find the vector between your point and this general point (will also involve 𝜆 or 𝜇).   
Step 3: Find the dot product of this vector with the direction vector of the line, and set equal to 0.   
Step 4: Use the value of 𝜆 or 𝜇 found in step 3 to determine the vector between your point and the 

general point precisely (just numbers now).   
Step 5: Find the magnitude of this vector using Pythagoras’ Theorem.   

 
Eg: 

Find the shortest distance from the point Q: (3,0,5) to the line L: 𝑟 = [
1
2

−2
] + 𝜇 [

−1
3
2

] 

 

𝑇ℎ𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦:  𝑃 = [
1 − 𝜇
2 + 3𝜇

−2 + 2𝜇
] 

 

𝑇ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑃𝑄⃗⃗ ⃗⃗  ⃗ 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦:  𝑃𝑄⃗⃗ ⃗⃗  ⃗ = 𝑂𝑄⃗⃗⃗⃗⃗⃗ − 𝑂𝑃⃗⃗⃗⃗  ⃗ = [
3
0
5
] − [

1 − 𝜇
2 + 3𝜇

−2 + 2𝜇
] = [

2 + 𝜇
−2 − 3𝜇
7 − 2𝜇

] 

 

𝑇ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑃𝑄⃗⃗ ⃗⃗  ⃗ 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟: 
 

[
2 + 𝜇

−2 − 3𝜇
7 − 2𝜇

] ∙ [
−1
3
2

] = 0    ⟹    −2 − 𝜇 − 6 − 9𝜇 + 14 − 4𝜇 = 0    ⟹     𝜇 =
3

7
 

 

𝐹𝑟𝑜𝑚 𝑡ℎ𝑖𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝜇, 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑃𝑄⃗⃗ ⃗⃗  ⃗ 𝑐𝑎𝑛 𝑛𝑜𝑤 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑:  𝑃𝑄⃗⃗ ⃗⃗  ⃗ = [
2 + 𝜇

−2 − 3𝜇
7 − 2𝜇

] =

[
 
 
 
 
 

17

7

−
23

7
43

7 ]
 
 
 
 
 

  

 

𝐴𝑛𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑖𝑠, 𝑡ℎ𝑒 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒, |𝑃𝑄⃗⃗ ⃗⃗  ⃗|, 𝑐𝑎𝑛 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑: 
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√172 + (−23)2 + 432 =

√𝟐𝟔𝟔𝟕

𝟕
= 7.38 𝑡𝑜 3 𝑠. 𝑓. 
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