C1 Essentials: Summary of AQA Core 1 content not provided in the formula book

Inequalities:

 $x < y \implies -x > -y$ Quadratic inequalities:

Find critical values by solving = 0. Sketch the curve to identify the required region.

Rationalising the denominator:

 $\frac{1}{a+\sqrt{b}} = \frac{a-\sqrt{b}}{(a+\sqrt{b})(a-\sqrt{b})} = \frac{a-\sqrt{b}}{a^2-b}$ **Straight lines:** $y - y_1 = m(x - x_1)$ Gradient $= \frac{y - step}{x - step}$ Perpendicular lines have $m_1m_2 = -1$ **Quadratic formula:** $ax^2 + bx + c = 0$ $\implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ **Completing the square:** $x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} - \frac{b^{2}}{4} + c$ **Roots of quadratics:** No roots: $b^2 - 4ac < 0$ One root: $b^2 - 4ac = 0$ Two roots: $b^2 - 4ac > 0$ **Circle equation:** Centre (*a*, *b*), radius *r*: $(x-a)^2 + (y-b)^2 = r^2$

Factor theorem:

(x - a) is a factor $\Leftrightarrow a$ is a root **Remainder theorem:**

 $P(x) \div (x - a)$ has remainder $R \iff P(a) = R$

Differentiation:

$$y = x^n \implies \frac{dy}{dx} = nx^{n-1}$$

 $\frac{dy}{dx}$ is the rate of change of y with respect to x. $\frac{dy}{dx}$ gives the gradient of the curve y. $\frac{dy}{dx} > 0 \implies \text{Function is increasing.}$ $\frac{dy}{dx} < 0 \implies \text{Function is decreasing.}$ Stationary points (eg max/min) occur when $\frac{dy}{dx} = 0$.

 $\frac{dy}{dx} = 0 \text{ and } \frac{d^2y}{dx^2} > 0 \implies \min$ $\frac{dy}{dx} = 0 \text{ and } \frac{d^2y}{dx^2} < 0 \implies \max$

Integration:

 $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$ $\int y \, dx \text{ is the area under the curve } y.$

 $\int_{a}^{b} y \, dx$ gives the area bounded by the curve, the *x*-axis and the lines x = a and x = b. If below the axis, integral will be < 0.