C1 Essentials: Summary of AQA Core 1 content not provided in the formula book

Inequalities:

$x<y \Rightarrow-x>-y$

Quadratic inequalities:

Find critical values by solving $=0$.
Sketch the curve to identify the required region.
Rationalising the denominator:
$\frac{1}{a+\sqrt{b}}=\frac{a-\sqrt{b}}{(a+\sqrt{b})(a-\sqrt{b})}=\frac{a-\sqrt{b}}{a^{2}-b}$
Straight lines:
$y-y_{1}=m\left(x-x_{1}\right) \quad$ Gradient $=\frac{y-\text { step }}{x-\text { step }}$
Perpendicular lines have $m_{1} m_{2}=-1$
Quadratic formula:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
\Rightarrow & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Completing the square:

$x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c$

Roots of quadratics:

No roots: $\quad b^{2}-4 a c<0$
One root: $\quad b^{2}-4 a c=0$
Two roots: $\quad b^{2}-4 a c>0$
Circle equation:
Centre (a, b), radius r :

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Factor theorem:

$(x-a)$ is a factor $\Leftrightarrow a$ is a root

Remainder theorem:

$P(x) \div(x-a)$ has remainder $R \Leftrightarrow P(a)=R$

Differentiation:

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

$\frac{d y}{d x}$ is the rate of change of y with respect to x.
$\frac{d y}{d x}$ gives the gradient of the curve y.
$\frac{d y}{d x}>0 \Rightarrow$ Function is increasing.
$\frac{d y}{d x}<0 \Rightarrow$ Function is decreasing.
Stationary points (eg max $/ \mathrm{min}$) occur when $\frac{d y}{d x}=0$.

$$
\begin{aligned}
& \frac{d y}{d x}=0 \text { and } \frac{d^{2} y}{d x^{2}}>0 \Rightarrow \min \\
& \frac{d y}{d x}=0 \text { and } \frac{d^{2} y}{d x^{2}}<0 \Rightarrow \max
\end{aligned}
$$

Integration:

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

$\int y d x$ is the area under the curve y.
$\int_{a}^{b} y d x$ gives the area bounded by the curve, the x-axis and the lines $x=a$ and $x=b$. If below the axis, integral will be <0.

