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1 Relative motion 
 

Relative displacement 

The displacement of A relative to B, is the position of A taking B as the origin, 
i.e. 𝐵𝐵𝐵𝐵�����⃗ , the vector from B to A 
so  ArB = rA  – rB . 

 

Relative velocity 

Differentiating   ArB = rA  –  rB   
we get   AvB  = vA  –  vB  
We can draw a vector triangle –  

sometimes it might be easier to write  AvB  + vB  = vA    
Also there are times when it is better to write the vectors as column vectors. 

 

The velocity of A relative to B is the velocity of A assuming that B is stationary. 

 

Example: A car, C, is travelling north at a speed of 40 km h-1. A truck, T, is travelling south 
east at a speed of 20√2 km h-1.  
Find the velocity of the truck relative to the car. 

Solution:  In this case choose vectors i, east and j, north. 

vC  =  � 0
40�,    vT  =  � 20

−20� 

⇒ TvC  =  vT  −  vC  =  � 20
−20�  − � 0

40�  =  � 20
−60� 

⇒ TvC  = √202 + 602  = 63⋅2  km h-1, on a bearing of  90 + 71⋅6 = 161⋅6o. 

 

Example: A boat can travel at 4 km h-1 in still water. A current flows at 3 km h-1 in the 
direction  N 600 W. 

In what direction should the boat steer so that it travels due north?  At what speed will it 
then be travelling? 

 

Solution: vB   ?  

 

  vW 3  

 

  BvW 4 ? 

 

AvB vB     

vA     

600 

Draw a vector triangle,  

BvW + vW  = vB 

draw vW first, as we 
know all about vW 

θ o 

BvW = 4 

vW = 3 

vB 

60o 

φ o 
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Sine Rule      sin 𝜃𝜃
3

 =   sin 60
4

     

⇒  sin θ  = 3√3
8

      ⇒  θ  = 40⋅505 … o 

⇒ φ  = 180 − 60 − θ  = 79⋅494… 

and    𝐯𝐯B
sin 79∙494…

 =   4
sin 60

    ⇒   vB  =  4⋅541… 

 

The  boat should steer on a bearing of  040⋅5o, and will travel at 4⋅54 km h-1. 

 

Collisions 
 
Example: A cyclist, C, travelling at 6 m s-1 sights a walker, W, 500 m due east. The walker is 

travelling at 2 m s-1 on a bearing of  310o. There are no obstacles and both the cyclist and 
the walker can travel anywhere. 

 What course should the cyclist set in order to meet the walker, and how long will it take 
for them to meet? 

 

Solution:  

Imagine that W is fixed, then C will travel directly towards W, in this case due east. 
So the direction of  CvW will be due east. 

 vC   6  ?  

 

 vW 2  

 

 CvW ?  

 

Sine Rule     sin 𝜃𝜃
2

 =   sin 40
6

     

⇒  sin θ  =  0⋅2142…     ⇒  θ  = 12⋅372 … o so C travels on bearing of 90 − 12⋅ 4 = 77⋅6.  

From the triangle  CvW = 2 cos 40  + 6 cos θ   =  7⋅3927…  
 

Considering the walker as fixed, the cyclist has to travel 
at 7⋅3927… m s-1 for a distance of 500 m. 

⇒  time to meet  =  500 ÷ 7.3927…  =  67.63… 
Cyclist travels on a bearing of 078o and they meet after 
68 seconds. 

 

 

500 

Draw a vector triangle,  

CvW + vW  = vB 

draw vW first, as we 
know all about vW 

θ o 

50o 

40o 

vW = 2 vC = 6 

CvW  

C0 W0 500 m 

7⋅3927…  m s-1   
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Closest distance 
 
Example: Two ice-skaters, Alice and Bob, start 

30 m apart and travel on converging courses. 
Alice travels at 15 m s-1 at an angle of 35o to 
the initial line and Bob travels at 10 m s-1 at 
an angle of 50o to the initial line, as shown 
in the diagram. 

Find the closest distance between the two skaters, and the time for A to reach that position. 

 

Solution: We consider B as fixed and A moving with the velocity AvB. 

 We draw a vector triangle, starting with  vA  – vB, noting 
that the angle between  vA  and  vB is  180 − 35 − 50  =  95o. 

Cosine rule x2 = 225 + 100 – 300 cos 95 

⇒ x = 18⋅7389… 

Sine rule sin 𝜃𝜃
10

 =   sin 95
𝑥𝑥

     

⇒ sin θ = 0⋅5316…  ⇒ θ  = 32⋅114… 
 

We now think of A moving with speed 
18⋅7389… m s-1  

 

at an angle of  35 − 32.114… = 2⋅885…o  to the initial line, A0B0, with B fixed. 
 

The closest distance is  B0C  =  30 sin 2⋅885…  =  1.51 m  to 3 S.F. 

and A ‘moves’ with speed 18⋅7389…  through a distance  A0C = 30 cos 2.885… 

⇒ A takes 30 cos 2∙885…
18∙7389…

  =  1⋅60 seconds to 3 S.F. 

 

B, of course, takes the same time to reach the position where they are closest (just in case 
you did not realise!). 
 

 

 

 

 

 

 

 

vB = 10  

θ  

95o  vA = 15  

AvB = x  

A0 B0 

35o 50o 

15 m s-1 
10 m s-1 

30 m 

A0 B0 

2⋅885o 18⋅74 m s-1 

30 m 

C 
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Best course 
 
Example: A man, who can swim at 2 m s-1 in still water, wishes to cross a river which is 

flowing at 3 m s-1. The river is 40 metres wide, and he wants to drift downstream as little 
as possible before landing on the other bank. 

(a) What course should he take? 

(b) How far downstream does he drift? 

(c) How long does it take for him to cross the river. 

 

Solution: The velocity of the man, vM, must be directed at as big an angle to the downstream 
bank as possible.  

 (a)  MvW  + vW  = vM    
First draw vW  of length 3. 

 

MvW is of length 2, but can vary in 
direction. 

 

We can choose any direction for MvW, to give     vM  =   MvW  + vW 

 

The best direction of vM is tangential to 
the circle of radius 2 

⇒ direction of vM  is at an angle  

θ  = sin-1�2
3
� = 41⋅8…o, with the bank 

downstream 

and the direction of MvW is at an angle  
90 − θ = 48⋅18…o  with the bank 
upstream. 

The man should swim upstream at an angle of 48o to the bank. 

 

 

 (b) Distance downstream is BC 

=  40
tan 𝜃𝜃

 = 20√5  

= 44⋅7 m  to 3 S.F. 

 

(c) vM= √32 − 22 =  √5 

 AC = 40
sin 𝜃𝜃

  = 60 

⇒  time taken = 60
√5

  =  12√5  =  26⋅8 s  to 3 S.F. 

river  
bank vW  = 3 

θ
  

MvW = 2 vM    

river  
bank 

A 

B C 

40 m 

θ  

river  
bank 

vW  = 3 

θ
  

MvW = 2 

best direction of vM    
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Change in apparent direction of wind or current 
 
Example: A cyclist travelling due north at 10 m s-1, feels that the wind is coming from the 

west. When travelling in the opposite direction at the same speed the wind appears to be 
coming from a bearing of 210o. What is the true velocity of the wind? 

 

Solution: 
 Case 1            Case 2 

vC  10 ↑     vC′  10 ↓ 

vW   ? ?    vW   ? ? 

WvC ? →    WvC′ ?  
 

  Note that vW is the same in both cases 

 

 

vC  +  WvC  = vW    vC′  +  WvC′  = vW 

 

 

 

 

 

 

Combining the two diagrams 
 

 x = 20 tan 30 = 20
√3

    

⇒ tan θ  =  𝑥𝑥
10

  =  2
√3

 

⇒ θ  =  49⋅1066…  

and vW = ��20
√3
�

2
+  102  =  �700

3
  =  15⋅275… 

The true velocity of the wind is 15⋅3 m s-1  blowing in the direction  049o. 

 

 

Note. In this sort of question look for ‘nice symmetry’, right angled triangles, isosceles 
triangles or equilateral triangles etc. 

 

  

vC′ WvC′ 

vW 

30 

vC 

WvC 

vW 

vC′=10 WvC′ 

vW 

30 

vC= 10 

WvC = x 

θ  

60o 
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2 Elastic collisions in two dimensions 
Sphere and flat surface.  

• Impulse is along the line perpendicular to the surface through the centre of the sphere. 
• Momentum       to the surface obeys  I = mv − mu 
• Newton’s Experimental Law, NEL, applies to velocity components        to the surface. 
• Velocity components parallel to the surface remain unchanged. 
• A good diagram showing before, after (and during) is essential! 

 

Example: A ball of mass 0⋅5 kg strikes a smooth, horizontal floor with a velocity of 12 m s-1 
at 40o to the horizontal, and rebounds at 30o to the horizontal. Calculate 

(a) the speed of the ball immediately after impact, 

(b) the coefficient of restitution, e 

(c) the impulse of the floor on the ball. 

 

Solution:  

 (a) Velocities parallel to floor not changed 

⇒ 12 cos 40  =  v cos 30 

⇒ v = 10⋅6146…  = 10⋅6 m s-1  to 3 S.F. 
(b) Motion perpendicular to the floor 

 NEL e = 𝑣𝑣 sin 30
12 sin 40

  =  0⋅688059…  =  0⋅688  to 3 S.F. 

(C)   +    I  =  mv − mu  =  0⋅5 × v sin 30  −  0⋅5 × (−12 sin 40)  = 6⋅51038… 

 ⇒ impulse from the floor is  6⋅51  Ns  to 3 S.F. 
 

 

Colliding spheres in two dimensions 

• Impulse is along the line of centres of the spheres. 
• Momentum is conserved in all directions – particularly along the line of centres. 
• Newton’s Experimental Law, NEL, applies to velocity components along the line of 

centres. 
• Velocity components perpendicular to the line of centres remain unchanged. 
• A good diagram showing before, after (and during) is essential! 

 
 
 
 
 
 
 
 

 

before during after 

40 
30 12 

v 

I 

0⋅5 kg 
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Oblique collisions 

In an oblique collision the velocity of one or both spheres is at an angle to the line of centres. 

It is often helpful to draw a diagram with the line of centres across the page. 

 

Example: A smooth sphere, A of mass m kg, is moving at a speed of 10 m s-1 when it strikes 
a stationary sphere, B of mass 2m kg. The spheres are of equal size, and A is moving at an 
angle of 60o to the line of centres before impact. The coefficient of restitution is 0⋅6. Find 
the velocities of each sphere immediately after the collision. 

 
Solution:  

Motion perpendicular to AB is unchanged 

⇒ v cos θ  =  10 sin 60  =  5√3 
and  B  moves along the line AB. 

 

For motion parallel to AB 

CLM m × 10 cos 60 =  2mw  − m × (−v sin θ ) 

⇒  2w + v sin θ  =  5  I 

NEL e  =  0⋅6  =  𝑤𝑤+𝑣𝑣 sin 𝜃𝜃
10 cos 60

 

⇒  w + v sin θ   =  3  II 

I − II w = 2  ⇒ v sin θ  =  1 

But  v cos θ  = 5√3,  ⇒  v  =  √75 + 12  =  √76  = 8⋅7177… 

and  tan θ  =  1
5√3

,    ⇒   θ  =  6.58677…… 

A is moving at 8⋅72 m s-1  at an angle of 96⋅6o  to the line of centres, AB, 

and  B is moving at 2 m s-1  along the line of centres. 

 

 

 

 

 

 

 

 
 

 

 

v 
θ  

1 

5√3 

m 2m 

10 
60 

A B 

v 
θ  w 

stationary before 

after 
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Example: A smooth sphere A of mass 2m kg collides with a 
smooth sphere B of mass 3m kg and of equal radius. Just 
before the collision A is moving with a speed of 5√2 m s-1 in 
a direction of 45o to the line of centres, and B is moving with 
a speed of 4 m s-1 at 60o to the line of centres, as shown in the 
diagram. The coefficient of restitution is  3

7
. 

(a) Find the K.E. lost in the impact. 

(b) Find the magnitude of the impulse exerted by A on B. 

 

Solution:  

Motion       to AB unchanged 

⇒ w = 5 ,   y = 2√3 
 
 

For motion parallel to AB 
 

CLM →+ 2m × 5  −  3m × 2  =  2mx + 3mz  

⇒ 2x + 3z = 4  I 

 

NEL e = 3
7
 = 𝑧𝑧−𝑥𝑥

5+2
 

⇒ z − x  =  3  II 

I + 2II       5z = 10      ⇒      z = 2  ⇒  x = −1 
 

(a)  vA  = √𝑤𝑤2 + 𝑥𝑥2  =  √25 + 1 =  √26 

 and vB   = �𝑦𝑦2 + 𝑧𝑧2  =  √12 + 4 =  4 

 K.E. lost   = (0⋅5 × 2m × 50 + 0⋅5 × 3m × 16)  − (0⋅5 × 2m × 26 + 0⋅5 × 3m × 16) 
       =  24m  J 

 

(b) Impulse of A on B, considering B 

 → +    I = mv − mu =  3m × 2− 3m(−2) =  12m  Ns. 

 

 

 

 

 

 

45 60 

A  2m B  3m 

5√2 m s-1  
4 m s-1  

I I 

w  

x  

y  

z  
after 

during 

before 

45 60 

A  2m B  3m 

5√2 m s-1  
4 m s-1  
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Angle of deflection 

Example: Two identical smooth snooker balls, A and B, are free to move on a horizontal 
table. A is moving with speed u and collides with B which is stationary. Immediately 
before the collision A is moving at an angle of α with the line of centres, and immediately 
after the velocity of A makes an angle β with the line of centres. The coefficient of 
restitution is e. 

(a) Show that  tan β = 2 tan 𝛼𝛼
1−𝑒𝑒

. 

(b) The collision deflects A through an angle θ .  Find tan θ . 

 

Solution:  

 (a) Motion        to line of centres unchanged 

⇒ v sin β  = u sin α   I 
and  B moves along line of centres 

 

For motion parallel to line of centres 

CLM mu cos α  =  mv cos β  + mw 

⇒ w = u cos α  −  v cos β    II 

NEL e = 𝑤𝑤−𝑣𝑣 cos 𝛽𝛽
𝑢𝑢 cos 𝛼𝛼

  =  𝑢𝑢 cos 𝛼𝛼−2𝑣𝑣 cos 𝛽𝛽
𝑢𝑢 cos 𝛼𝛼

            using II 

⇒ 2v cos β   =  u cos α (1 − e)    III 

I ÷ III       sin 𝛽𝛽
2 cos 𝛽𝛽

  =  sin 𝛼𝛼
cos 𝛼𝛼(1−𝑒𝑒)

     ⇒    tan β  =  2 tan 𝛼𝛼
1−𝑒𝑒

    Q.E.D. 

  

 (b) A is deflected through θ  =  β − α  

⇒ tan θ  = tan(β − α )  =  tan 𝛽𝛽−tan 𝛼𝛼
1+tan 𝛽𝛽 tan 𝛼𝛼

    

⇒ tan θ  =  
2 tan 𝛼𝛼

1−𝑒𝑒   − tan 𝛼𝛼

1+ 2 tan 𝛼𝛼
1−𝑒𝑒 tan 𝛼𝛼

   =  (1+𝑒𝑒) tan 𝛼𝛼
1−𝑒𝑒+2 tan 2 𝛼𝛼

 

 

Resolving a velocity in the direction of a given vector 

Example: Find the resolved part of  v = �2
5� m s-1  in the direction of the 

vector a = �3
1�. 

Solution: The resolved part of  v in the direction of a is  v cos θ  

But  v . a  =  va cos θ   ⇒ v cos θ   =  𝒗𝒗.𝒂𝒂
𝑎𝑎

 

v . a  =  �2
5� . �3

1�  =  11,  and  a  =  √32 +  12  =  √10 

⇒  resolved part of  v  in the direction of  a  is  𝒗𝒗.𝒂𝒂
𝑎𝑎

  =  11
√10

  =  3⋅48  to 3 S.F. 

v 

a θ
  

α  

β  

A 

v 

u  

w  

B 
before 

after 
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Oblique collisions using vectors 

Example: Two identical smooth spheres, A and B both of mass 2 kg, are moving on a 
horizontal plane, with velocities uA = � 3

−4�  and uB  =  � 1
−4�.  

They collide and A moves off with velocity vA = � 1
−3�. 

(a) Find the impulse acting on A. 

(b) Find the velocity of B immediately after impact. 

(c) Find the coefficient of restitution. 

 

Solution: (a) IA  =  2 vA − 2 uA  =  2 � 1
−3�  −  2 � 3

−4�  =  �−4
2 �  Ns 

(b) IB = − IA  =  � 4
−2�  =  2 vB − 2 uB  =  2 vB − 2� 1

−4� 

 ⇒ vB  =  � 3
−5�  m s-1. 

(c) The impulse must be along the line of centres, so the line of centres is parallel to 

  IB  =  � 4
−2�,    which has length  2√5 

 

Components along the line of centres 

before  A  � 3
−4� . � 4

−2� × 1
2√5

   =  2√5 

  B �−1
2 � . � 4

−2� × 1
2√5

   = −0 ∙ 8√5     

 ⇒ speed of approach  =  2⋅8 √5 
 

after  A � 1
−3� . � 4

−2� × 1
2√5

   =  √5 

    B � 3
−5� . � 4

−2� × 1
2√5

   = 2 ∙ 2√5     

   ⇒ speed of separation  =  1⋅2√5 

 

   ⇒ e  =  speed  of  separation   
speed  of  approach

  =  1⋅2√5
2⋅8 √5

  =  3
7
 . 

 

  

2√5 
A 

B 
0⋅8√5 

√5 
A 

B 
2⋅2√5 
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3 Resisted motion in a straight line 
Acceleration – reminder 

Acceleration is  
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2    =  𝑥̈𝑥  = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  = v 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  . 

You should be ready to use any one of these – all should be measured in the direction of x 
increasing. 

 

 

Driving force and air resistance 

Example: A particle of mass 5 kg is projected along a smooth horizontal surface with a speed 
of 5 m s-1 in a straight line. There is a constant force of 20 N in the direction of the initial 
velocity. When the particle is moving at a speed of  v m s-1 , the air resistance is 1

500
𝑣𝑣2 N. 

(a) Find how long it takes to acquire a speed of 50 m s-1. 

(b) Find the distance travelled in gaining a speed of 50 m s-1. 

 

Solution:  

(a) R →, N2L       20 −  1
500

𝑣𝑣2 = 5 𝑥̈𝑥   

In this case we are dealing with speed and time 

and so use  20 −  1
500

𝑣𝑣2 = 5 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  

 

⇒    � 𝑑𝑑𝑑𝑑
𝑇𝑇

0
 =   �

2500
10000 − 𝑣𝑣2  𝑑𝑑𝑑𝑑

50

5
 =   �

25
2

100 − 𝑣𝑣

50

5
+

25
2

100 + 𝑣𝑣
  𝑑𝑑𝑑𝑑  

 

� 𝑡𝑡 �
0

𝑇𝑇
  =   �

25
2

ln �
100 + 𝑣𝑣
100 − 𝑣𝑣

��
5

50

  ⇒   𝑇𝑇 =   
25
2

ln �
150
50

�  =   12 ∙ 5 ln 3 = 13 ∙ 7 seconds  

 

 (b) In this case we are dealing with speed and distance and use 

 R →,  N2L 20 −  1
500

𝑣𝑣2 = 5v 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

⇒   � 𝑑𝑑𝑑𝑑
𝑋𝑋

0
 =  �

2500𝑣𝑣
10000 − 𝑣𝑣2  𝑑𝑑𝑑𝑑

50

5
 =  �  −1250 ln(10000 − 𝑣𝑣2) �

5

50
  

 
⇒ X = − 1250 ln �7500

9975
�  =  356⋅47…  =  356 m  to 3 S.F. 

  

→ 5 
  

  → 50 

1
500

𝑣𝑣2  

  𝑥̈𝑥   

x 
O 
  

20 
  

5 kg 
  

X 
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Vertical motion 

Terminal speed 
Note that terminal speed occurs when the acceleration is zero. 

Example: A man of mass 70 kg is falling freely after jumping from an aircraft. The air 
resistance is 0⋅3v2, where v m s-1  is his speed. Find his terminal speed. 

 

Solution: For terminal speed, the acceleration is zero, 

R ↓  ⇒ 70g − 0⋅3v2  =  0 

⇒   v = 47.819…  =  48 m s-1   to 2 S.F.  

 

Resistance proportional to square of velocity 
 
Example: A ball is projected vertically upwards with a speed of 49 m s-1 from the top of a 

cliff, which is 180 metres above the sea. As the ball comes down it just misses the cliff. In 
free fall the ball would have a terminal speed of 70 m s-1 , and the air resistance is 
proportional to the square of the velocity, R =  kv2, where k is a positive constant. 

Find the greatest height of the ball, and find its speed when it falls into the sea. 

 

Solution: Measure x from top of cliff 

taking ↑ as the positive direction for x, 𝑥̇𝑥 and 𝑥̈𝑥   

For terminal speed  v = 70,  𝑥̈𝑥 = 0,  

R ↑   mg = k × 702  ⇒  k = 9.8
4900

𝑚𝑚 = 0⋅002m 

 
 Upwards motion,  greatest height 

 R ↑ −mg − 0⋅002mv2  =  m 𝑥̈𝑥   

⇒ −0⋅002(4900 + v2)  =  𝑥̈𝑥  
Here we are dealing with speed and distance 

use −0⋅002(4900 + v2) =  v 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

⇒            � 𝑑𝑑𝑑𝑑
𝑋𝑋

0
 =  �

−500𝑣𝑣
4900 + 𝑣𝑣2

0

49
 𝑑𝑑𝑑𝑑   

⇒         𝑋𝑋 =   � −250 ln(4900 + 𝑣𝑣2) �
49

0
  =  −250 ln 4900

7301
 

 =    250 ln 1⋅49  =  99⋅6940…  

⇒ greatest height = 100 m  to 2 S.F. 
 

0⋅3v2 

70g 

  0 

k × 702 

mg 

  0 

180 m 

x 
mg+0⋅002mv2 

  𝑥̈𝑥 
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Downwards motion,  new diagram  

Taking ↓ as the positive direction for x, 𝑥̇𝑥 and 𝑥̈𝑥, 

and measuring x from the greatest height 

R ↓ using   mg − 0⋅002mv2  = mv 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   

⇒           � 𝑑𝑑𝑑𝑑  =  �
500𝑣𝑣

4900 − 𝑣𝑣2  𝑑𝑑𝑑𝑑    

⇒         𝑥𝑥 =  −250 ln(4900 − 𝑣𝑣2)  + 𝑐𝑐    

 x = 0, v = 0    ⇒    c =  ln 4900 

⇒ x  =  −250 ln�4900−𝑣𝑣2

4900
� 

⇒ 𝑒𝑒−𝑥𝑥 250� =  4900−𝑣𝑣2

4900
 

⇒ v  =  4900�1 − 𝑒𝑒−𝑥𝑥 250� � 

⇒         𝑣𝑣 =   70√1 − 𝑒𝑒−0∙004𝑥𝑥   = 57⋅439…    

when x = 180 + 250 ln 1⋅49          from the greatest height 

⇒ ball falls into the sea at a speed of 57 m s-1  to 2 S.F. 

 

 

 

 

Resistance proportional to velocity 
In the case where the resistance force R = kv2  (k > 0), R is always positive, and therefore 
different diagrams must be drawn for ‘forward’ and ‘backward’ movement, as R must always 
oppose motion. 

But when the resistance force R = kv  (k > 0), R is positive when the velocity is positive and 
negative when the velocity is negative. This allows us to draw one diagram whether the 
particle is moving ‘forwards’ or ‘backwards’, as in the following example.  

 

 

 

 

 

 

 

 

 

180 m 

x 

greatest 
height 

0⋅002mv2 

mg 

 𝑥̈𝑥 
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Example: A ball is projected vertically upwards with a speed of 49 m s-1 from the top of a 
cliff, which is 180 metres above the sea. As the ball comes down it just misses the cliff. In 
free fall the ball would have a terminal speed of 70 m s-1 , and the air resistance is 
proportional to the velocity, R = kv, where k is a positive constant. 

Find the greatest height of the ball, and show that its speed is between 49 m s-1  and 
50 m s-1 when it falls into the sea. 

 

Solution: For terminal speed  v = 70,  𝑥̈𝑥 = 0,  

R ↓    mg = k × 70  ⇒  k = 9.8
70

m = 7
50

 m 

 

 

taking ↑ as the positive direction for x, 𝑥̇𝑥 (= v) and 𝑥̈𝑥  

Note that when the particle is moving upwards, v is positive and so the 
resistance, 7

50
 mv, is downwards, but when the particle is moving 

downwards v is negative and so the resistance, 7
50

 mv, is upwards.  

Thus the same diagram can be used for both up and down. 

 

 Measuring x from the top of the cliff 

 R ↑ −mg −  7
50

 mv  =  m 𝑥̈𝑥   

⇒ − 7
50

 (70 + v) = v 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   

⇒             � 𝑑𝑑𝑑𝑑
𝑋𝑋

0
 =  �

−50
7 𝑣𝑣

70 + 𝑣𝑣

𝑉𝑉

49
 𝑑𝑑𝑑𝑑 =    �

−50
7 (𝑣𝑣 + 70 − 70)

70 + 𝑣𝑣

𝑉𝑉

49
 𝑑𝑑𝑑𝑑       

⇒             � 𝑑𝑑𝑑𝑑
𝑋𝑋

0
 =    50

7
� −1 +

70
70 + 𝑣𝑣

𝑉𝑉

49
 𝑑𝑑𝑑𝑑       

 

⇒      �𝑥𝑥 �
0

𝑋𝑋
=  � 50

7
(−𝑣𝑣 + 70 ln(70 + 𝑣𝑣)) �

49

𝑉𝑉
 

⇒  X   =   50
7
�−𝑉𝑉 + 49 + 70 ln �70+𝑉𝑉

119
�� 

At a speed of 49 m s-1  downwards V = −49,  ⇒ X = 50
7
�49 + 49 + 70 ln �70−49

119
��  =  −167⋅3… > −180, 

and when V = −50,  X  = 50
7
�49 + 50 + 70 ln �70−50

119
��  =  −184⋅55… < −180 

⇒ when the ball falls into the sea its speed is between 49 m s-1  and 50 m s-1.  

 

 

 

 

 

k × 70 

mg 

  0 

𝑥̇𝑥 = v 

mg + 7
50

mv 

 𝑥̈𝑥 

180 m 

x 
mg + 7

50
 mv 

  𝑥̈𝑥 
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Power and resisting force 

If an engine is working at a constant rate, P, then the power, P = Fv. As v varies so will F. 

Example: A car of mass 1200 kg is travelling on a straight horizontal road, with its engine 
working at a constant rate of 25 kW. The resistance to motion is proportional to the square 
of the velocity, and the greatest speed the car can maintain is 50 m s-1. 

Show that 125000 − v3 = 6000 v2 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  , where v m s-1  is the velocity of the car when x 
metres is its displacement from a fixed point on the road. Hence find the distance travelled 
by the car in increasing its speed from 30 m s-1  to 45 m s-1. 
 

Solution: Power P = 25000 

⇒ F = 𝑃𝑃
𝑣𝑣

=  25000
𝑣𝑣

   

If the greatest possible speed is 50 m s-1   
25000

50
  = k × 502  ⇒ k = 0⋅2 

R → , N2L       25000
𝑣𝑣

  − 0⋅2v2 = 1200 𝑥̈𝑥  = 1200 v 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   

⇒ 125000 – v3 = 6000 v2 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   Q.E.D. 

⇒         � 𝑑𝑑𝑑𝑑
𝑋𝑋

0
  =    �

6000𝑣𝑣2

125000 − 𝑣𝑣3

45

30
 𝑑𝑑𝑑𝑑 

⇒         � 𝑥𝑥 �
0

𝑋𝑋
 =   � −2000 ln(125000 − 𝑣𝑣3) �

30

45
 

⇒ X  =  2000 ln �98000
33875

�  =  2124⋅58…  =  2125 m  to the nearest metre. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F kv2 

v→  
x 

  𝑥̈𝑥   

1200 kg 
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4 Damped and forced harmonic motion 
 

Damped harmonic motion 

A particle executing S.H.M. and also subject to a resistance force which is proportional to the 
speed. Other types of resistance forces are beyond the scope of this course. 

 

Example 1: A particle, P, of mass 2 kg is moving in a straight line. Its distance from a fixed 
point, O, on the line after t seconds is x metres. A force of 26 N acts on the particle 
towards O, and a resistance force of magnitude 8v N also acts on the particle.  

 When t = 0, x = 1⋅5 m and 𝑥̇𝑥 = 9 m s-1. 

 

Solution: take → as the positive direction for x, 𝑥̇𝑥 and 𝑥̈𝑥. 

Note that when the particle is moving right, 𝑥̇𝑥 is 
positive and so the resistance is to the left, but when 
the particle is moving left 𝑥̇𝑥 is negative and so the 
resistance is to the right.  

Thus the same diagram can be used when the particle is 
moving both left and right. 

 
R →, N2L −26x − 8𝑥̇𝑥  =  2𝑥̈𝑥   

⇒ 𝑥̈𝑥  +  4𝑥̇𝑥  +  13x  =  0 

 A.E. is  m2 + 4m + 13 = 0  

⇒ (m + 2)2 + 9 = 0 ⇒ m = −2 ± 3i 

⇒ G.S. is  x = e−2t (A cos 3t + B sin 3t) 

 x = 1⋅5  when  t = 0,    ⇒   A = 1⋅5  

 𝑥̇𝑥  =  −2 e−2t (A cos 3t + B sin 3t)  + e−2t (−3A sin 3t + 3B cos 3t) 

and 𝑥̇𝑥  = 9 when t = 0     ⇒    9 = −2A + 3B    ⇒ B = 4 

⇒ x = e−2t (1⋅5 cos 3t + 4 sin 3t) 
 

In this case the particle continues to oscillate with ever decreasing amplitude. This is 
called light damping. 

 

 

 

 

 

 

 

𝑥̇𝑥  

26x + 8𝑥̇𝑥 
 𝑥̈𝑥 

O 

x 
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Example 2: A particle, P, of mass 2 kg is moving in a straight line. Its distance from a fixed 
point, O, on the line after t seconds is x metres. A force of 6 N acts on the particle towards 
O, and a resistance force of magnitude 8v N also acts on the particle.  

 When t = 0, x = 3 m and 𝑥̇𝑥 = 9 m s-1. 
 

Solution: take → as the positive direction for x, 𝑥̇𝑥 and 𝑥̈𝑥. 

 
R →, N2L −6x − 8𝑥̇𝑥  =  2𝑥̈𝑥   

⇒ 𝑥̈𝑥  +  4𝑥̇𝑥  +  3x  =  0 
 A.E. is  m2 + 4m + 3 = 0  

⇒ (m + 1)(m + 3) = 0 ⇒ m = −1 or −3 

⇒ G.S. is  x = Ae−t  +  Be−3t   

 x = 3  when  t = 0,    ⇒   A + B  =  3   I 

 𝑥̇𝑥  =  −Ae−t  −  3Be−3t   

and 𝑥̇𝑥  = 9 when t = 0     ⇒    9 = −A − 3B   II   

I + II   ⇒  B = −6,  ⇒  A = 9 

⇒ x = 9e−t  −  3e−3t   
 

In this case the particle does not oscillate but just goes ‘gludge’.  
This is called heavy damping. 

 

Light, critical and heavy damping 
The differential equation for damped S.H.M. will always be of the form 

  𝑥̈𝑥  +  k 𝑥̇𝑥  +  lx  =  0,     where  k > 0  and  l > 0                 think about it! 

 

If  k2 − 4l < 0, we have complex roots, like example 1, and we have light damping. 

If  k2 − 4l = 0, we have equal real roots and we have critical damping. 

If  k2 − 4l > 0, we have distinct real roots, like example 2, and we have heavy damping. 
 

 

 

 

 

 

 

 

𝑥̇𝑥  

6x + 8𝑥̇𝑥 
 𝑥̈𝑥 

O 

x 
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Damped harmonic motion on a vertical elastic string 

As always, you must measure x from the equilibrium position. 
 

Example: A particle of mass m is suspended at the lower end of a vertical elastic string, of 
which the upper end is fixed at A. The modulus of elasticity is 40m N and the natural 
length of the string is 2 metres. A resistance force of magnitude 4mv acts on the particle, 
where v is the speed at time t.  

The particle is pulled down a distance of 0⋅5 metres below the equilibrium position and 
released. Find an expression for x, the distance below the equilibrium position, in terms of 
t, and describe the damping. 

 

Solution: As previously, if we mark the resistance force 
as 4m𝑥̇𝑥 (as shown) it will always be in the direction 
opposite to motion. 

At the equilibrium position, E 

R ↓     mg  = TE  =  𝜆𝜆𝜆𝜆
𝑙𝑙

   

and at P, x  below the equilibrium position, 
R  ↓  mg − TP − 4m𝑥̇𝑥  = m 𝑥̈𝑥   

⇒  mg − 𝜆𝜆(𝑒𝑒+𝑥𝑥)
𝑙𝑙

 − 4m𝑥̇𝑥  = m 𝑥̈𝑥   

⇒  𝑥̈𝑥  + 4𝑥̇𝑥  + 40𝑚𝑚
2𝑚𝑚

𝑥𝑥 = 0     since  mg = 𝜆𝜆𝜆𝜆
𝑙𝑙

 and λ = 40 m 

⇒  𝑥̈𝑥  + 4𝑥̇𝑥  + 20𝑥𝑥 = 0  

A.E. m2 + 4m + 20 = 0 ⇒ m = −2 ± 4i 

G.S.  x  =  e−2t (A cos 4t  +  B sin 4t) 

When t = 0, x = 0⋅5  and  𝑥̇𝑥 = 0,    

⇒    0⋅5 = A 

  𝑥̇𝑥  =  −2 e−2t (A cos 4t  +  B sin 4t)  +  e−2t (−4A sin 4t  +  4B cos 4t) 

⇒  0  =  −2A  + 4B ⇒ B = 0⋅25 

⇒  x  =  e−2t (0⋅5 cos 4t  +  0⋅25 sin 4t) 
which is light damping. 

 

 

 

 

 

 

l = 2 

e 

x 

TE 

mg 

L 

E 

P 

TP +4m𝑥̇𝑥   

mg 

𝑥̇𝑥   𝑥̈𝑥   

A 
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Forced harmonic motion 

This is similar to the previous section, with an additional periodic force. 

 

Example: A particle P of mass 3 kg is moving on the x-axis. At time t the displacement of P 
from the origin O is x metres and the speed of P is v m s-1. Three forces act on P − a force 
of 15x N towards O, a resistance to the motion of magnitude 6v N and a force 39 sin 3t N 
in the direction OP. 

Find x as a function of t, and describe the motion when t becomes large. 

 

Solution: R →,  N2L    

⇒ 39 sin 3t − 15x − 6𝑥̇𝑥  =  3𝑥̈𝑥     

⇒ 𝑥̈𝑥  + 2𝑥̇𝑥  + 5x = 13 sin 3t 
A.E.  m2 + 2m + 5 = 0 

⇒ (m + 1)2 = −4      ⇒   m = −1 ± 2i 

C.F. x  =  e−t (A cos 2t + B sin 2t) 
For  P.I.  try   x  = C sin 3t + D cos 3t 

⇒  𝑥̇𝑥 = 3C cos 3t − 3D sin 3t 

⇒  𝑥̈𝑥 = − 9C sin 3t − 9D cos 3t 

⇒     − 9C sin 3t − 9D cos 3t + 6C cos 3t − 6D sin 3t + 5C sin 3t + 5D cos 3t  = 13 sin 3t  

⇒ −9C − 6D + 5C  =  13  ⇒ −4C − 6D = 13 

and −9D + 6C + 5D  =  0  ⇒ 3C  −  2D  =  0 

⇒ C = −1  and D = −1⋅5 
 

G.S. x  =  e−t (A cos 2t + B sin 2t)  −  sin 3t − 1⋅5 cos 3t 
 

as  t  becomes large,  e−t → 0, 

⇒ x ≈ − sin 3t − 1⋅5 cos 3t,   

which is  S.H.M with period 2𝜋𝜋
3

  and amplitude√1 +  1 ∙ 52  =  √3 ∙ 25 . 

  

x 

O P 

39 sin 3t 15x + 6𝑥̇𝑥   

𝑥̈𝑥   

𝑥̇𝑥   
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Resonance 

When a particle is undergoing S.H.M. with period 2𝜋𝜋
ω

, and a force with the same period 2𝜋𝜋
ω

 is 
applied, resonance occurs. 

 

Example: A particle P of mass 3 kg is moving on the x-axis. At time t the displacement of P 
from the origin O is x metres. Two forces act on P − a force of 64x N towards O (the force 
needed for S.H.M) and a force 48 sin 4t N in the direction OP. 

Find x as a function of t, and describe the motion when t becomes large. 

 

Solution: R →,  N2L    48 sin 4t − 64x = 4𝑥̈𝑥   

⇒ 𝑥̈𝑥  + 16x = 12 sin 4t 
A.E. m2 + 16m  =  0 

⇒ m = ±4i 
C.F. x  =  A sin 4t  +  B cos 4t 
since  sin 4t  occurs in the C.F., for the P.I. we try 

 x  =  Ct cos 4t  (generally we should try (Ct cos 4t  +  Dt sin 4t), but Ct cos 4t  works here) 

⇒ 𝑥̇𝑥 =   C cos 4t − 4Ct sin 4t 

and 𝑥̈𝑥 =  − 8C sin 4t  − 16Ct cos 4t 

⇒ − 8C sin 4t  − 16Ct cos 4t  + 16Ct cos 4t = 12 sin 4t 

⇒ C  =  −1⋅5 

G.S. x  =  A sin 4t  +  B cos 4t  − 1⋅5t sin 4t. 
 

As  t  increases, the term  − 1⋅5t sin 4t  dominates whatever the values of A and B, and we 
have oscillations with ever increasing amplitude – this is resonance. 

  

x 

O P 

48 sin 4t        64x 

𝑥̈𝑥   

𝑥̇𝑥   
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5 Stable and unstable equilibrium 
 

Potential energy of a system 

To investigate the stability of a system: 

1. Choose a fixed point or fixed level from which to measure the potential energy¸ V. 
2. Calculate V relative to the fixed point or fixed level. P.E. is positive for masses above 

the fixed point, and negative for masses below the fixed point. 
3. Writing ‘V + constant’ gives the potential energy of the system relative to any fixed 

point or fixed level. This is similar to writing ‘+ c’ when integrating. 
4. Differentiate V (probably) to find maxima and minima. 
5. Stable positions of equilibrium occur at minima of V, and unstable positions of 

equilibrium occur at maxima of V. 

 

Example: A smooth circular wire of radius 2 metres is fixed in a vertical plane. A bead, B, of 
mass 0⋅1 kg is threaded onto the wire. A small smooth ring, R, is fixed 1 metre above the 
centre of the wire. An inextensible string of length 4 metres, with one end attached to the 
bead, passes through the ring; a particle, P, of mass 0⋅25 kg, attached to the other end of 
the string, and hangs vertically below the ring. Find the positions of equilibrium and 
investigate their stability. 

 

Solution: Calculate the potential energy of the system 
relative to the centre of the circle, O. 

 The bead, B, is  2 cos θ  above O,  

⇒ P.E. of bead is  0⋅1 g × 2 cos θ  = 0⋅2 g cos θ   

Note that if θ  > 90o, B is below O and cos θ is 
negative, so P.E. is negative as it should be. 
 

For the P.E. of the particle, P, we need the length 
RB. 

Cosine rule ⇒ RB2 = 12 + 22 − 2 × 1 × 2 × cos θ  

⇒ RB = √5 − 4 cos 𝜃𝜃 

Length of string is 4 m   ⇒   OP  =  4 − 1 − √5 − 4 cos 𝜃𝜃 

⇒ P.E. of particle is  − 0⋅25 × g × (3 − √5 − 4 cos𝜃𝜃)        negative as P is below O 

Note that if P is above O then OP is negative and the P.E. is positive, as it should be. 
Thus the P.E. of the system is 

 V  =  0⋅2 g cos θ  − 0⋅25 × g × (3 − √5 − 4 cos 𝜃𝜃)  

⇒ V  =  0⋅2 g cos θ  + 0⋅25 × g × √5 − 4 cos 𝜃𝜃  +  constant 

Note that the ‘constant’ allows the P.E. to be measured from any fixed level. 
 

O 
θ
  

B 0⋅1 kg 

R 

1 m 

P 0⋅25 kg 

2 m 
θ
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To find the positions of equilibrium 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −0⋅2 𝑔𝑔 sin θ  +  0⋅25 × 𝑔𝑔 × 
1
2

(5 − 4 cos 𝜃𝜃)
−1
2  × 4 sinθ   

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0  ⇒  𝑔𝑔 sin θ �−0⋅2 +
1
2

(5 − 4 cos 𝜃𝜃)
−1
2 �    

⇒ sin θ = 0    or   5 − 4 cos θ   =  25
4
⇒ cos θ = −5

16
 

⇒ θ  = 0o, 180o, 108⋅2o  or 251⋅8o 
 

To investigate the stability 

𝑑𝑑2𝑉𝑉
𝑑𝑑𝜃𝜃2 =  𝑔𝑔 cos θ �−0⋅2 +

1
2

(5 − 4 cos 𝜃𝜃)
−1
2 � + 𝑔𝑔 sin𝜃𝜃 ×

−1
4

(5 − 4 cos𝜃𝜃)
−3
2 × 4 sinθ  

 

θ  = 0 ⇒ 𝑑𝑑
2𝑉𝑉

𝑑𝑑𝜃𝜃2  =  g × (−0⋅2 + 0⋅5)   > 0 ⇒ min V ⇒  STABLE 

θ  =  180 ⇒ 𝑑𝑑
2𝑉𝑉

𝑑𝑑𝜃𝜃2  =  −g × �−0⋅2 + 1
2

× 1
3
�  > 0 ⇒ min V ⇒  STABLE 

θ  =  108.2 ⇒ 𝑑𝑑
2𝑉𝑉

𝑑𝑑𝜃𝜃2  =  g × (0 − 0⋅ 0577…)  < 0 ⇒ max V ⇒  UNSTABLE  

θ  =  251.8 ⇒ 𝑑𝑑
2𝑉𝑉

𝑑𝑑𝜃𝜃2  =  g × (0 − 0⋅ 0577…)  < 0 ⇒ max V ⇒  UNSTABLE  
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Elastic strings or springs and P.E.  
When an elastic string is stretched, or an elastic spring is stretched or compressed, the elastic 
potential energy, E.P.E., is always taken as positive. If the stretch (or compression) is 
decreased then energy is released. 

 

Example: A framework consists of 4 identical light rods of 
length l m. The rods are smoothly joined at their ends. The 
framework is suspended from a fixed point, A, and a weight 
of 36 N is attached at C. B and D are connected by a light 
elastic spring of natural length l m, and modulus of elasticity 
65 N. 

Show that the framework can rest in equilibrium when each 
rod makes and angle of sin−1 � 5

13
� and investigate the 

stability. 

 

Solution: Take A as the fixed level from which P.E. is 
measured. Let ∠CAD = θ. 

P.E. of the weight is  − 2l cos θ  × 36 

BD = 2× l sin θ  

⇒ E.P.E.  =  1
2

× 65 × (𝑙𝑙−2𝑙𝑙 sin θ)2

𝑙𝑙
 

⇒ V  =  1
2

× 65 × (𝑙𝑙−2𝑙𝑙 sin θ)2

𝑙𝑙
  − 72l cos θ  (+ const) 

⇒ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

    =  1
2

× 65 × 2×(𝑙𝑙−2𝑙𝑙 sin θ)×(−2𝑙𝑙 cos 𝜃𝜃)
𝑙𝑙

   + 72l sin θ  

  =  −130l (1 − 2 sin θ) cos θ  +  72l sin θ 

When  θ = sin−1 � 5
13
�  =  cos−1 �12

13
�        5, 12, 13 triangle 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

    =  −130l ×  3
13

 × 12
13

  +  72l × 5
13

   =   0     

⇒ Equilibrium when θ = sin−1 � 5
13
�   

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   =  −130l cos θ  + 130l sin 2θ   + 72l sin θ  

 𝑑𝑑2𝑉𝑉
𝑑𝑑𝜃𝜃2       =  130l sin θ  + 260l cos 2θ  + 72l cos θ   

   =  130l sin θ  + 260l (1 − 2 sin2θ ) + 72l cos θ    

  =  130l × 5
13

  +  260l × �1 − 2 × � 5
13
�

2
�  + 72l × 12

13
   =  a positive number   

⇒ minimum of V, ⇒ equilibrium is stable. 
 

I did try putting AC = 2x, instead of using θ − not a good idea‼ 
  

A 

B D 

C 

36 N 

θ  
l 
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