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1 Inequalities

Algebraic solutions

Remember that if you multiply both sides of an inequality by a negative number, you must turn
the inequality sign round: 2x > 3 = -2x < -3.

A difficulty occurs when multiplying both sides by, for example, (x — 2); this expression is
sometimes positive (x > 2), sometimes negative (x < 2) and sometimes zero (x = 2). In this case
we multiply both sides by (x — 2)?, which is always positive (provided that x # 2).

2

Example 1:  Solve the inequality 2x + 3 < % X # 2
Solution: Multiply both sides by (x — 2)? we can do this since (x — 2) # 0
= 2x+3)(x—2)?2 <x*(x—2) DO NOT MULTIPLY OUT

= Cx+3)(x—2)2—x*(x—-2)<0

= (x—2)2x?—-x—-6—-x%)< 0 I
= x—2)(x—-3)x+2)< 0 /\

-3 2 -1 1 2 3 4
= x<—=2,0r2<x<3

Note — care is needed when the inequality is < or >.

x 2
) : R S ~ ~
Example 2:  Solve the inequality = a3 X#-1, X#-3
Solution: Multiply both sides by (x + 1)%(x + 3)? which cannot be zero
= x(x+ 1D (x+3)% =2(x+3)(x + 1)? DO NOT MULTIPLY OUT

=  x(x+DE+3)2-2(x+3)x+1D?>=>0

= (x+1D(x+3)(x?+3x—-2x—-2)=>0

= x+DEx+3)x+2)(x—1)=0

from sketch it looks as though the solution is \ /

55 -
x<—3 or —2<x<;—1 or x=1

BUT since x#-1, x #-3,

the solution is x<-3 or —2<x<-1or x=21
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Graphical solutions

Example 1:  On the same diagram sketch the graphs of y = % and y = x — 2.

Use your sketch to solve the inequality % > xX-2
Solution: First find the points of intersection of the two graphs

2x

= — = X-2 /
x+3

= 2x = x> +x—6

= 0=(x—-3)(x+2)

= x=-2or 3

From the sketch we see that

RS N

x<-3 or —2<x<3. Note that x = -3

For inequalities involving |2x —5| etc., it is often essential to sketch the graphs first.

Example 2:  Solve the inequality |x*—19| < 5(x — 1).

Solution: It is essential to sketch the curves first in order to see which solutions are needed.

To find the point A, we need to solve
—(x2—-19)=5x—-5 = x?+5x—24=0
= (x+8)x—-3)=0 = x=—-8or 3

From the sketch x # -8 = X=3
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To find the point B, we need to solve
+(x?-19)=5x -5 = x> —5x—14=0
= x-7)xx+2)=0 = x=-2or7
From the sketch x # -2 = X=7

and the solution of [x* — 19| < 5(x—1) is 3<x<7

2 Series — Method of Differences

The trick here is to write each line out in full and see what cancels when you add.

Do not be tempted to work each term out — you will lose the pattern which lets you cancel when
adding.

Example 1:  Write in partial fractions, and then use the method of differences to find

r(r+1)
1

n 1 1 1 1
the sum E = — 4+ —+—F _
soq Tr+D)  1x2 | 2x3 | 3x4 nn+1)

. 1 1 1
Solution: = = - —
r(r+1) r r+1
1 1 1
put r=1 = T2 = 7 —,77 >
_ 11
put r=2 = 2x3 2 713
_ E S VLA |
put r=3 = ~ = 3 713
etc. L=
1 1 & 1
put r=n = = = - —
n(n+1) n n+1
adding = Y?'—— = 1 - —— = L
g 1r(r+1) n+1 n+1
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Example 2:  Write

in partial fractions, and then use the method of differences to

r(r+1)(r+2)
n
. 1 1 1 1 1
find the sum z = + o ———__
r=1 r+1D(r+2) 1X2X3  2X3X4  3%x4X5 n(n+1)(n+2)
. 2 1 2
Solution: —_— = - - = 4 —
r(r+1)(r+2) T r+1 r+2
2 1 2 1
put r=1 = 1x2x3 -1 2 ":,7/'§
L
2 1 2 1
put r=2 = T T 2 73 +,,7IZ
2 1 & 2 T
putr=3 = 5o T 3 7 4:,775
2 1 2F 1
put r=4 = 4X5X6 T4 _,7/' 5 ":775
i L
etc.
/ﬂ /ﬂ
: ‘:/ ‘:/
2 1 2 1
PULTEN L = e~ w1 7 T
- 2 _ lel 2o, 1
put r=n = n(n+1)(n+2) n n+1 n+2
i n__ 2 - 1_2,1, 1 2 1
adding = %3 r(r+1)(r+2) 1 2 + 2 + n+l1  n+l t n+2
-1t . 1
T2 n+l  n+2
_ n?+3n+2-2n—4+2n+2
- 2(n+1)(n+2)
. yn 2 _ n?+3n
1 r(r+1)(r+2) 2(n+1)(n+2)
. Zn 1 _ n2+3n
1 r(r+1)(r+2) 4(n+1)(n+2)
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3  Complex Numbers

Modulus and Argument

The modulus of z=x+1iy isthe length of z

= r=|z| =x?+y? z

and the argument of z is the angle made by z r
with the positive x-axis, between —z and z.

N.B. arg z is not always equal to tan™?! G)

Properties
Z=rcosd +irsinéd

Z

w

_

lzw| = |z||w], and =
lwi

arg (zw) = argz + argw, and arg (%) = argz — argw

Euler’s Relation e

z=e"” = cosf+ising
é =e ' =cosf—ising
(&) | -
Example: Express 5e\'+/ inthe form x +iy.
Solution: Se(BTn) = 5(COS (3_”) + isin (3_”))
: " ;
= —_Sﬁ + Lﬂ
2 2

Multiplying and dividing in mod-arg form

rel® x se'® = rsel@+9)

= (rcos@ +irsinf) xX(scos¢p +issing) = rscos(6 + ¢)+ irssin(@ + ¢)
and

. . ——
re « sel® = ;e‘(e ®)

= (rcos@ +irsinf) +~(scos¢p +issing) = gcos(9—¢)+ igsin(e—d))
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De Moivre’s Theorem
(re®)" = rmei® = (rcos® +irsinB)" = (r"cosnf + i r" sinnd)
Applications of De Moivre’s Theorem
Example: Express sin 5@ interms of sin @ only.
Solution: From De Moivre’s Theorem we know that
cos 560 + isin560 = (cos 8+ isin 6)°
= €0s°@ + 5i cos*d sind + 10i° cos>@ sin*@ + 10i° cos?d sin’@ + 5i* cosd sin‘ +i° sin°@

Equating complex parts

—  sin560 = 5co0s*@ sin® — 10 cos? sinH + sin°@

5(1—sin?6)?sind — 10(1 —sin’d) sin®0 +sin°0

16 sin°0 — 20sin®@ + 5sind

1 1 ..
Z"+—= = 2cosnf and z"—z—n=215|nm9

zn -
Z = cos@ +isind

= z" = (cos@ +isinf)" = (cosnb + i sinnbh)

and == (cos@ —isin@)™ = (cosnf — i sinnh)

zn -
from which we can show that
(z+l)=20059 and (z—l)=2isin9
VA VA
"+~ =2cosnf and z"——= = 2isinno

zn zn

Example: Express sin’@ interms of sin56, sin36 and sind.

Solution: Here we are dealing with siné, so we use

(2isin8)® = (z—l)5

VA

= 32isin®0 = 25— 5z% G) + 1023 (Ziz) 1022 (ZLS)J, 5, (i)_ (i)

74 25
(= %) =5(=* = )+ 10(2 =)

= 32isin®@ = 2isin50 - 5x2isin30 + 10 x 2isind

= 32isin® 6

= sin’@ = i(sin 50 — 5sin 36 + 10sin 9)
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n" roots of a complex number

The technique is the same for finding n™ roots of any complex number.

Example: Find the 4™ roots of 4 + 4i, and show the roots on an Argand Diagram.
Solution: We need to solve the equation  z* = 4 + 4i
1. Let z = rcos@ +irsiné@
= 7' = r*(cos40 +isin46)
2. |4+4i|=V42+42=y32 and arg(4+4i) = 2
= 4+4i = V32(cos; +isin7)
3. Then z*'=4+4i
becomes r*(cos 46 +isin46) = 32 (cos7 +isin7)
—_ ot . . 9 .
= V32 (cos—- +isin~) adding 2z
= \/ﬁ(coslTT” +i sianT” adding 2z
= \/ﬁ(cosz%’r +i sinZ?T” adding 2z
4. = r* =432
- 9 17m 257
and 46?—4, 7 1 .
= r =132 = 15422
- T 9 17m 25w
and 0_16’ 16' 16 ' 16
5. =  rootsare V32 (cos - +isin ) = 1513 + 0.301i
V32 (cos = +isin = = -0.301+1.513
16 16
V32 (cos = +isin=F) = -1513 —0.301 ]
V3Z(cos 2 +isinZF) = 0301 -1513i

-4 -2 \ 2 4
=1

-2

Notice that the roots are symmetrically placed around the origin, and the angle between
T

.2 . 2
roots is T” = ~ Theangle between the n™ roots will always be 7” .

For sixth roots the angle between roots will be 2?" = g , and so on.
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Roots of polynomial equations with real coefficients

1. Any polynomial equation with real coefficients,
Apx™ + Ay x4 4, x4 apx?+ agx+ ap =0, ... ()
where all a; are real, has a complex solution

2. = any complex n™ degree polynomial can be factorised into n linear factors over the
complex numbers

3. If z=a+ib isarootof (I), then its conjugate, a —ib is also a root.

4. By pairing factors with conjugate pairs we can say that any polynomial with real
coefficients can be factorised into a combination of linear and quadratic factors over the
real numbers.

Example: ~ Giventhat 3—2i isarootof z°-5z2+7z+13=0
@) Factorise over the real numbers
(b) Find all three real roots

Solution:
@ 3—2i isaroot = 3+ 2i isalso aroot
=  (@Z-(B-2)z-(3+2i) = (Z*-6z +13) isa factor
= -5 +77+13= (Z2 -6z +13)(z+1) by inspection

(b) = rootsare z = 3-2i, 3+2i and -1

Loci on an Argand Diagram

Two basic ideas

1. lz—wl is the distance from w to z.
2. arg (z— (1 +1)) isthe angle made by the line joining (1+i) to z, with the x-axis.

Example 1:

|z—2—il =3 isacircle with centre (2 +i) and radius 3
Example 2:

lz +3-il = [z-2+i]

o |z —(3+)] = lz-@-)]

is the locus of all points which are equidistant
from the points

A(-3,1) and B (2, -1), and so is the
perpendicular bisector of AB.

10 FP2 NOV 2014 SDB



Example 3: \y

arg(z —-4) = 5?" is a half line, from (4, 0), making 2\

-2

5 f .
an angle of == with the x-axis. s b

-4

Example 4:
|z—-3] = 2] z+2il isacircle (Apollonius’s circle).
To find its equation, put z =x + iy
= |(x=3)+iyl = 2[x+i(y+2)| square both sides
= (x=3+y* = 4(x*+(y+2)?) leading to

= 3°+6x+3y°+16y+7 = 0

= (x+1) +(y+§)2 ==

-8 2v13

which is a circle with centre (-1, < ), and radius Tl :

Example 5:

arg (22) =
g z+5) 6

= arg(z—2)—arg(z+5) = g

= 0-¢ ==

which gives the arc of the circle as

shown.

N.B.

The corresponding arc below the x-axis

would have equation

z—2 _ T
arg (m) = "3

as @ — ¢ would be negative in this picture.
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Transformations of the Complex Plane

Always start from the z-plane and transform to the w-plane,z=x+1iy and w=u +iv.

Example 1:  Find the image of the circle |z—5]=3
. 1
under the transformation w = — .

z—2
Solution: First rearrange to find z
w= — = z7-2== = 7== 42
z—2 w w
Second substitute in equation of circle
= |%+2—5|=3 = |1_‘jw|=
= |1-3w|/=3w| = 3fz—w|=3lwl
1
= w=3|=wl

which is the equation of the perpendicular bisector of the line joining 0 to %

= the image is the line u :%
Always consider the ‘modulus technique’ (above) first;
if this does not work then use the u + iv method shown below.
Example 2:  Show that the image of the line x + 4y = 4 under the transformation

1 . . . . .
w=— isa circle, and find its centre and radius.

Solution: Firstrearrangetofindz = z= & + 3

The ‘modulus technique’ is not suitable here.

z=x+ily and w=u+iv

1 _ 1 1 u—iv

= 2= o¥3= ot s am a3

= X+iy = u:i:z"‘ 3

Equating real and imaginary parts x = uzzvz +3and y = uz__:vz
= X+4y=4 becomes ——+3 - —Z =

= W—u+V+4v =0

= (u—%)2+(v+2)2=%

V17

which is a circle with centre G —2) and radius 5

There are many more examples in the book, but these are the two important techniques.
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Loci and geometry

It is always important to think of diagrams.

Example: z lies on the circle |z - 2i| = 1.
Find the greatest and least values of arg z.

Solution: Draw a picture!

The greatest and least values of arg z
will occurat B and A.

Trigonometry tells us that

0=

ol

and so greatest and least values of

v

21 [
argz are — and 3

FP2 NOV 2014 SDB
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4  First Order Differential Equations

Separating the variables, families of curves

Example:

Solution:

Find the general solution of

dy y
—_ = >
dx  x(x+1)' for x>0,

and sketch the family of solution curves.

o _ _ Y 1 — 1 - (1_ 1
dx = fydy_fx(x+1) dx_fx dx

dx x(x+1) x+1
= Iny = Inx —In(x+1) + InA

_ Ax _ A(x+1-1) 1
= y = x+1 x+1 = 4 (1 x+1)

Thus for varying values of A and for x > 0, we have

471y

A=3

2 A=2

A=1
X

2 4 6
A=-1
_2 R

==3

Exact Equations

In an exact the L.H.S. is an exact derivative (really a preparation for Integrating Factors).

Example:

Solution:

14

Solve sinx Z—z + ycosx =3x?

Notice that the L.H.S. is an exact derivative
. dy _ d .

sinx — +ycosx = — (ysinx)

d . _ 2
= —(ysinx) = 3x

= ysinx = [3*dx = X +c

x3+c

sinx

= y=

FP2 NOV 2014 SDB



Integrating Factors

Z—i’ +Py = Q where P and Q are functions of x only.

In this case, multiply both sides by an Integrating Factor, R = el Pax,
The L.H.S. will now be an exact derivative, ;—x (Ry).
Proceed as in the above example.

Example: Solve xj—z +2y =1
Solution: First divide through by x
= 4y + Ey = 1 now in the correct form
dx x x

2
Integrating Factor, I.F.,is R = eJP* = oJx9% = g2Inx = 2

2dy

= X~ +2xXy = X multiplying by x?
d , o _ . o
= E(x y) = X, check that it is an exact derivative
2 x?
=  Xy=Jxde=-+c¢
- _ 1, c
y = 2 x?

Using substitutions

Example 1:  Use the substitution y =vx (where v isa function of x) to solve the equation

dy _ 3yx2+y3

dx x34+ xy2 '
. dy dv
Solution: = VX — =V + X—
y = dx dx
d 3yx2+y3 dv 3(vx)x2%+ (vx)3 3v+ v3
N dy _ 3yxTHy" 4 3 = 3w0xTH )T
dx x3+ xy? dx x3+ x(vx)? 1+v2

and we can now separate the variables

- de _ 3v+v3 v = v+ v3-v—-v3 _ 20
dx 14+v2 1+v2 1+v2
1+v2 dv 1
= —_— 2 = =
2v dx X

1 v _ 1
= fﬁ*‘; dv —f;dx

2

1 v
= -lnv + — =Inx + ¢
2 4
_ Y 1,y v _
But v== = -In=+ = =Inx+c
x 27 x 4x2
2 2 _ 2 72 . .
= 2X“Iny +y"=6x"Inx + c’x c’is new arbitrary constant

and | would not like to find y!!!
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Example 2:
dy _ 2
Y + ycotx.
. 1 d -1d
Solution:  y=- 2= ==
z dx z4 dx
-1 dz 1 1
= — — = — + —cotx
z2 dx z2 z
d
= 2+ zcotx = —1
dx

Use the substitution y = i to solve the differential equation

Integrating factor is R = e/ cotx dx = plnGsinx) — gjp x

. dz .
= sinx o +zcosx = —sinx

d . .
= —(zsinx) = —sinx
dx

= Zsinx = cosx + ¢C

cosx+c
= 7= —
sinx
— __ sinx
y - cosx+c
Example 3:

dy
= cos(x +y)

Solution: Z=X+Yy - Z-14
dx
= &z _ 1+ cosz
dx
= f1+COSZ dZ: fdx

= f%secz(g) dz = x+c

= tan(g):x+c

+y

But z=x+y = tan(xT)=x+c

check that it is an exact derivative

but z =

Use the substitution z = x +y to solve the differential equation

separating the variables

zZ Z
1+cosz = 1+2cosz(z)—1= ZCOSZ(E)

16
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5 Second Order Differential Equations

Linear with constant coefficients

d?y

a— + bZ—z + ¢y = f(x) where a, b and c are constants.

dx?

(1) when f(x)=0

First write down the Auxiliary Equation, A.E

A.E.

am?+ bm+c=0

and solve to find theroots m = a or f8

(i)

(i)

(iii)

Example 1:

Solution:

uu

Example 2:

Solution:

RV

If « and B are both real numbers, and if a # 8
then the Complimentary Function, C.F., is
y =Ae™ + BeP* where A and B are arbitrary constants of integration

If « and B are both real numbers, and if « = f
then the Complimentary Function, C.F., is
y = (A+ Bx)e®, where A and B are arbitrary constants of integration

If « and B are both complex numbers, and if «a =a+ib, f =a—ib
then the Complimentary Function, C.F.,
y = e*(Asinbx + B cos bx),
where A and B are arbitrary constants of integration
d?y dy _
Solve TxZ + 2; -3y =0
AE. ism?+2m—-3=0
m—-1)(m+3)=0

m =1 or -3

y = Ae* + Be 3% when f(x) = 0, the C.F. is the solution
d’y dy _

Solve — + 6—+ 9y =0

AE.is m?*+ 6m+9= 0

(m+3)2=0
m = -3 (and -3) repeated root
y = (A + Bx)e™3* when f(x) = 0, the C.F. is the solution
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Example 3:  Solve % + 4% + 13y =0
Solution: AE.is m*+ 4m+13= 0
= (M+2P°-@Bi?=0
= M+2+3i))(m+2-3i)=0
= m=-2-3i or -2+3i
= y = e **(Asin3x + B cos 3x) when f(x) = 0, the C.F. is the solution

18

(2) when f (x) £ 0, Particular Integrals
First proceed as in (1) to find the Complimentary Function, then use the rules below to
find a Particular Integral, P.I.

Second the General Solution, G.S. , is found by adding the C.F. and the P.1.

= GS. =CF + P.L

Note that it does not matter what P.l. you use, so you might as well find the easiest,
which is what these rules do.

(1)  fx) =

Try y=Ae"
unless e appears in the C.F., in which case try y = Cxe*

unless xe appears in the C.F., in which case try y = Cx%"*.

(2) f(x) =sinkx or f(x)=coskx

Try y=Csinkx + D coskx
unless sin kx or cos kx appear in the C.F., in which case
try y=x(Csinkx + D coskx)

3 f (x) = apolynomial of degree n.

Try f(X) = apx™+ ap1x" 1+ a,x" 2+ L tax+ a
unless a number, on its own, appears in the C.F., in which case
try f(X) = x(apx™+ ap_1x™ 1+ ap_,x" 2+ .+ ax + ag)

4) In general

to find a P.1., try something like f (x), unless this appears in the C.F. (or if there is
a problem), then try something like x f (x).
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: ay dy _
Example 1:  Solve oz T 6dx + 5y = 2x
Solution: AE. is m*+6m+5=0

= (m+5(m+1)=0 = m=-5 or -1
= CF.is y=A4e™ 5 + Be™

FortheP.l.,try y=Cx+D

dy d?y
= = nd — =
= ™ C a 2 0

Substituting in the differential equation gives
0 + 6C + 5(Cx+ D) =2x

= 5C=2 comparing coefficients of x
- Cc=:2
5
and 6C + 5D =0 comparing constant terms
-12
= D=—
25
. 2 12
= P.1. ISy—EX—E
= GS. is y=A4e>* + Be‘x+§x—£
. a2y _ oy — p3x
Example 2:  Solve ™ 6dx + 9y = e
Solution: AE.is is m*-6m+9=0
= (M-37=0
= m=3 repeated root
= CF.is y=(Ax+ B)e3*

In this case, both e3* and xe3* appear in the C.F.,
soforaP.l.wetry y = CxZ%e3¥

= Z—z = 2Cxe3* + 3Cx%e3*

d?y
dx?

and = 2Ce3 + 6Cxe3* + 6Cxe3* + 9Cx?%e3*

Substituting in the differential equation gives

2Ce3* + 12Cxe3* + 9Cx?e3* — 6(2Cxe3* + 3Cx%e3*) + 9 Cx%e3* = 3%
2Ce3* = 3%

c=:
2

. 1
Plis y= Exze3x

u v Ul

G.S.is y=(Ax + B)e3 + %xze“
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. d?x
Example 3: Solve — -x = 4cos2t

dt?
giventhat x=0and x =1 when t=0.

Solution: AE.is m’-1=0

20

= m = %1
= C.F.is x =Ae'+ Be™t
Forthe P.I1.try x = Csin2t + D cos2t

= x = 2Ccos2t —2Dsin?2t
and ¥ = —4Csin2t — 4D cos2t

Substituting in the differential equation gives

(—4Csin2t — 4Dcos2t) — (Csin2t + Dcos2t) = 4cos 2t

= -5C =0 comparing coefficients of sin 2t
and -5D =4 comparing coefficients of cos 2t
= C=0 and D = _75
= Plis x= _TSCOSZt
= G.S.is x = Aet + Be™t — %cos 2t
= x = Aet — Be ' + %sin 2t
x=0and when t=0 :>O:A+B—§
and x =1 when t=0 = 1=A-B
= A=2 and B = 1
8 8
. 9 .1 4 5
= solution is x=ce + se -~ ZCOSZt
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Zy

2d% dy _
D.E.s of the form ax”— + bx—~+ cy = f(x)

Substitute x =e"

dx u
= — = e =X
du
dy dx _ dy dy dy
n =T x = — =x— result |
and du du dx = du xdx
dy
d2 a®/ d /d dx
But ay (/) = () X — using the chain rule
du? du dx du
dy
d(x /dx) dx .
= —— X — using result |
dx du
d*y dy) dx
= |x— —] X — roduct rule
( dx? T dx du P
a2y 2 d2%y dy L ax
= - = xi== xX—= since — = x
du? dx? + dx du
d? d? d
= P A A A using result |
dx? du? du
d? d? d d d
Thuswe have x222 = 22 _ 2 gpd x2 = 2
dx? du? du dx du

substituting these in the original equation leads to a second order D.E. with constant
coefficients.

2
Example: Solve the differential equation x23732' - BxZ—i + 3y = —2x2
Solution: Using the substitution x = €", and proceeding as above
2 d%y d*y dy dy dy
x°—= = — — — and x—= = —=
dx du du dx du
@y _ay _ gay _ e
= du? du 3du + 3y = —Ze
dz_y — d_y — 2u
= Tz 4—- + 3y = —2e
= AE.is m*-4m+3=0
= m-3)(m-1) =0 = m=3orl
= C.F.isy = Ae® + Be"

For the P.1. try y = Ce®

2
2 = 2ce? and T = 4Ce™

= du du?

= 4Ce?™ — 8Ce?™ + 3Ce?™ = —2e%
= C=2

=  GS.isy = Ae* + Be' + 2¢®

But x=e¢' =  GS.isy=AC + Bx + 2
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1)

2)

3)

4)

22

Maclaurin and Taylor Series

Maclaurin series

FG) = FO+ xf'(0)+ ZF7(0) + Zf(0) + - + X fFm(0) + -

Taylor series

fx+a)= fl@+ xf'(a)+

x2

5@+ ’;—Tf”’(a)+--- + %f”(a) + e

Taylor series — as a power series in (x —a)

replacing x by (x—a) in2) we get

f@) = f@) + (- a)f @+ L (@) + 2 (@) + o+ T (a) 4

Solving differential equations using Taylor series

(@)

(b)

If we are given the value of y when x =0, then we use the Maclaurin series with

f(0) = yo the value of y when x =0

0) = d_y> ay _
f (0) = (dx 0 the value of ™ when x=0
etc. to give

r@=y =+ x(F) + 52, 5G), -+ (G,

If we are given the value of y when x = a, then we use the Taylor power series

with
fla) = vy, the value of y when x=a
1] dy dy
f'(a) = (—) the value of == when x=a
dx/ g dx
etc. to give

Y= vt -0y (2) + &2 (ZTY)a + (%)a 4.

a

NOTE THAT 4 (a) and 4 (b) are not in the formula book, but can easily be found

using the results in 1) and 3).
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Standard series

x? x3 x"
*=1+4+x +;+ BTl + e+ F+ converges for all real x

3 5 2n—-1

sinx = x — %+ J; + (1)t (;Cn o + - converges for all real x
x2 x4 noi xn2

cosx =1-— E-I_ m -+ (-1) a2 converges for all real x

x2  x3 n-1x"
In(1+x) = X=Z+ =+ (-1) +--- converges for -1 <x<1
(1+x)"—1+nx+n(n Dy2 4. --+w T converges for —1<x<1

Example 1:

Solution:
=
=

=

and

Example 2:

r!

Find the Maclaurin series for f(x) = tanx, up to and including the term in x*

f(x) = tanx = ) =0
f'(x) = sec?x —~  f"0)=1
f'"(x) = 2sec? x tan x —  F"(0) =0
f"(x) = 4sec? xtan? x + 2sec*x = f¥0)=2

f@) = FO)+ 2@+ SF0) + T0) + -+ TR0+

2 3
tanx = 04+ x X1 + %X0+ %XZ up to the term in x*

%3

3

IR

tan x X +

Using the Maclaurin series for €* to find an expansion of ex+i’ up to and

including the term in x°.

Solution:

2 3
eX=1+x+>+>+ ..
2! 3!

3
X+x x+x?
et = 1+ (x+x2)+ ( ) + ( 5 ) up to the term in x®
x242x34-+  x34
= 14+x+x%2+ o + 2 up to the term in X3
x+x? ~ 3.2 7.3 L3
e = 1+x+5x + X up to the term in x
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Example 3:  Find a Taylor series for cot (x + g) up to and including the term in X2

Solution: f(x) = cotx and we are looking for
T\ _ T (T x2 (T
F+d) =r Q)+ G+ 5 rG)
T
f(x) = cotx - f(z)—l
' - _ 2 N (3
= f'(x) = —cosec” x = f (4) =-2
= f"(x) = 2cosec? x cotx = " (%) =4
2
= cot(x+£) = 1-2x+ 3" x4 up to the term in x?
4 2!
= cot (x + %) = 1—2x+ 2% up to the term in x?

Example 4:  Use a Taylor series to solve the differential equation,

2 2
y% + (Z—i) +y=0 equation |
up to and including the term in x?, given that y =1 and % = 2 when x=0.

In this case we shall use

f@) = FO+ xf' @+ ZF70) + ZF0) + - + Zfn(0) + -

= v=y+a(g) + 563, 56,

We already know that yp =1 and (Z—i) =2 values when x =0
0
2 2
= (d—Z) = (—l(d—y) - 1) = -5 values when x =0
dx</ y \dx 0
Differentiatin &y + (d—y)z + y=0
9 dx? dx y
Py | dy, dy .y Ay _
= ydx3+dxxdx2+2dxxdx2+dx =0
I d dz
Substituting yo = 1, (ﬁ)o =2 and (ﬁ)o = -5 values when x = 0

a3 - _
N (ﬁ)(ﬁz X(T5)+2x2x(5)+2=0

- (@),

2
—  solutionis y =1+ 2x+ ’;—'x(‘5)+’;—><28

= y=l42x— 2x? 4123
2 3
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Series expansions of compound functions

Example: Find a polynomial expansion for
2 . . :
ke , up to and including the term in x°.
1-3x
Solution: Using the standard series
_ (2x)?
cos2x = 1 — + -

2!

and  (1-3x)70 =1+3x+——

=14+3x+9x%+27x3

2 2
- COS 2x :(1_(2x) )(1+3x+9x2 —|—27X3)
1-3x 2!
=1+ 3x +9x% + 27x3 — 2x% — 6%
2
N cosx:1+3x+7x2+21x3
1-3x

up to and including the term in x®

—1X—-2X-3

(—3x)% + — (—3x)3

up to and including the term in x®

up to and including the term in x®

up to and including the term in x®
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7 Polar Coordinates

The polar coordinates of P are (r, 8)

P(r, 9)
r = OP, the distance from the origin or pole, ;
and @ is the angle made anti-clockwise with the o f
initial line. pole initial line

In the Edexcel syllabus r is always taken as positive

(But in most books r can be negative, thus (—4, g) is the same point as (4, 37") )

Polar and Cartesian coordinates

Ary
From the diagram
r=yxt+ys P )
and tan = ~ (use sketch to find ). er y
X =rcoséd and y = rsin 4. X g

Sketching curves

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The
important values of & are those for which r =0.

The sketches in these notes will show when r is negative by plotting a dotted line; these sections
should be ignored as far as Edexcel A-level is concerned.

Some common curves

r=a+bcos0O

Cardiod Limacon without dimple Limacon with a dimple
a=>b a>2b, b<a<2b
41y r=3+3cos 0 4 41y
r=3+1.4cos 8 r=3+2cos @
2 2 2
1 1 1
X A X
2 4 2 4 6 2 4 6

26
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Limacon with a loop Circle Line
a<b
r negative in the loop r negative in bottom half
41y 41y 4ty
3 r=2+3coseo r=3 3 6 =1/6
2 2
1 1
- X
—r
. 2 4 6 ///_1
L
-2 '// -2
-3 -3
-4 -4 -4
Line Line Circle
4 4
41y Y r =3 cosec 6 Y
3 o 3
r=4cos@
2 2 2 ¢
1 1 1/_\
-1 -1 -1 v
-2 -2 -2
-3 -3 -3
o r=3secH 4 4
Rose Curves
r=4cos 380 r=4cos 360
0<09<r L 0L 2x
41y y
3
r=4 cos 36 r=4 cos 36

I/

K

I

I
1
I
1
v

N,

e

S

below x-axis, r negative

FP2 NOV 2014 SDB

e "~
e .,
- A
e

above x-axis, r negative



r=3cos48

44Ly
r=3 cos 40

Thus the rose curve r = a cos@ always has n petals, when only the positive values of r are
taken.

Leminiscate of Bernoulli Spiral r=26 Spiral r=¢’

21 r*=16 cos 20

Circle r=10cos @

Notice that in the circle on OA as diameter, the P
angle P is 90° (angle in a semi-circle) and 47
trigonometry gives us that r =10 cos 4. ol L
(@) 0 A
5 0
-2+
-4
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Circle r=10sin @

In the same way r = 10 sin @ gives a circle on the y-axis.

Areas using polar coordinates

. 1
Remember: area of a sector is ;rzé)

Areaof OPQ = oA ~ ~r260

—  Area OAB~ Z(%rZSH)

as 08 -0
0]
=  Area OAB = [,? 2r?do
1 2
Example: Find the area between the

curve r=1+tan @
and the half lines @ =0 and 6 =2

3
P — (31,2
Solution: Area = [ 73 -r*d6
2
= fon/3 1(1+tan6)? do
— 7T/3 1 2
= fo 1(1+2tan6 +tan®0) do

= fon/3 1(2tan@ + sec*6) do

[2In(sec ) + tan 9]::/3

N |-

= In 2 M
2
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Tangents parallel and perpendicular to the initial line

y=rsinf and x =rcosf

dy
- d
*/ae

dx

d
" ae

1) Tangents will be parallel to the initial line (= 0), or horizontal, when Z—z =0

dy
= T 0
2 (rsing) = 0
= e (rsinf) =
2) Tangents will be perpendicular to the initial line (8= 0), or vertical, when Z—z is infinite
dx
= T 0
< 0) = 0
= " (rcos@) =
Note that if both Z—Z =0 and Z—Z = 0, then Z—Z is not defined, and you should look at a sketch

to help (or use I'Hopital's rule).

Example:
(a)
(b)

Solution:

(@)

=

U

30

Find the coordinates of the pointson r = 1 + cos & where the tangents are

parallel to the initial line,
perpendicular to the initial line.

r =14 cos@ isshown in the diagram.
Tangents parallel to =0 (horizontal)

dy _ i . _
E_O = dg(rsmé?) =0

;—9((1+0059)sin0)= 0 =
cos @ —sin? @ + cos? 6 = 0 =
(2cosB —1)(cos6+1)= 0 =
0=i§ or

Tangents perpendicularto =0 (vertical)

Z—:zO = ;—H(rcose) =0
:—9((1+c059)c059)= 0 =
—sinf —2cosfsinf = 0 =
cosf = —% or sinf =0

Bziz?” or 0,7

i(sin6?+sin9cosé?)= 0
a6
2cos?64+cosf—1=0

1
c059=5 or —1

;—Q(COSH +cos?20)= 0

sinf (1+2cosf) =0
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http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

From the above we can see that

(@)

(b)

(©)

the tangent is parallel to 6 =0 1
Vs Vs
at B (6="1)and E(6=-5)

also at 8 = m, the origin — see below

the tangent is perpendicularto € =0 -1

at A(0=0), C (9:%”) and D (9:‘—2”)

3

we also have both ax _ 0and 2 =0 when 6 = 7!l
de de

From the graph it looks as if the tangent is parallel to @ =0 at the origin, (6 = m),

and from I'HOpital's rule it can be shown that this is true.

>
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Index

complex numbers, 7
applications of De Moivre’s theorem, 8
argument, 7
De Moivre’s theorem, 8
Euler’s relation, 7
loci, 10
loci and geometry, 13
modulus, 7
nth roots, 9
roots of polynomial equations, 10
transformations, 12
differential equations. see second order
differential equations, see first order
differential equations
first order differential equations, 14
exact equations, 14
families of curves, 14
integrating factors, 15
separating the variables, 14
using substitutions, 15
inequalities, 3
algebraic solutions, 3
graphical solutions, 4
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Maclaurin and Taylor series, 22
expanding compound functions, 25
standard series, 23
worked examples, 23

method of differences, 5

polar coordinates, 26
area, 29
cardiod, 26
circle, 28
leminiscate, 28
polar and cartesian, 26
r=acosnég, 27
spiral, 28
tangent, 30

second order differential equations, 17
auxiliary equation, 17
complimentary function, 17
general solution, 18
linear with constant coefficients, 17
particular integral, 18
using substitutions, 21
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