Pure Further Mathematics 1

Revision Notes

June 2013

Further Pure 1

1	Complex Numbers					
	Definitions and arithmetical operations					
	Complex conjugate					
	Properties					
Complex number plane, or Argand diagram						
Complex numbers and vectors						
	Multiplication by <i>i</i>					
	Modulus of a complex number					
	Argument of a complex number					
	Equality of complex numbers					
	Square roots					
	Roots of equations					
2	Numerical solutions of equations					
	Accuracy of solution					
	Interval bisection					
	Linear interpolation					
	Newton-Raphson10					
3	Coordinate systems					
	Parabolas11					
	Parametric form					
	Focus and directrix					
	Gradient11					
	Tangents and normals					
	Rectangular hyperbolas					
	Parametric form					
	Tangents and normals					

4	Matrices	14
	Order of a matrix	14
	Identity matrix	14
	Determinant and inverse	. 14
	Singular and non-singular matrices	. 15
	Linear Transformations	. 15
	Basis vectors	15
	Finding the geometric effect of a matrix transformation	16
	Finding the matrix of a given transformation	16
	Rotation matrix	17
	Determinant and area factor	17
5	Series	18
6	Proof by induction	19
	Summation	. 19
	Recurrence relations	. 20
	Divisibility problems	. 20
	Powers of matrices	. 21
7	Appendix	22
	Complex roots of a real polynomial equation	. 22
	Formal definition of a linear transformation	. 22
	Derivative of x^n , for any integer	. 23
8	Index	24

1 Complex Numbers

Definitions and arithmetical operations

 $i = \sqrt{-1}$, so $\sqrt{-16} = 4i$, $\sqrt{-11} = \sqrt{11}i$, etc. These are called *imaginary* numbers

Complex numbers are written as z = a + bi, where a and $b \in \mathbb{R}$. a is the *real part* and b is the *imaginary part*.

 $+, -, \times$ are defined in the 'sensible' way; division is more complicated.

(a+b)	i) + (c + di)	=	(a+c) + (b+d)i	
(a+b)	i) - (c + di)	=	(a-c) + (b-d)i	
$(a+bi) \times (c+di) =$		=	$ac + bdi^2 + adi + bci$	
		=	(ac-bd) + (ad+bc)i	since $i^2 = -1$
So	(3+4i) - (7)	- 3 <i>i</i>)	= -4 + 7i	
and	(4+3i)(2-4)	5 <i>i</i>)	= 23 - 14i	

Division – this is just rationalising the denominator.

$$\frac{3+4i}{5+2i} = \frac{3+4i}{5+2i} \times \frac{5-2i}{5-2i}$$
$$= \frac{23+14i}{25+4} = \frac{23}{29} + \frac{14}{29}i$$

multiply top and bottom by the complex conjugate

Complex conjugate

z = a + biThe complex conjugate of z is $z^* = \overline{z} = a - bi$

Properties

If z = a + bi and w = c + di, then

(i)
$$\{(a+bi)+(c+di)\}^* = \{(a+c)+(b+d)i\}^*$$

= $\{(a+c)-(b+d)i\}$
= $(a-bi)+(c-di)$

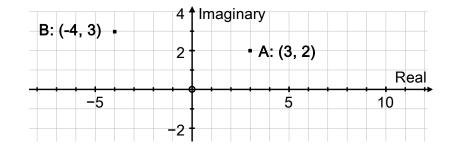
 $\Leftrightarrow \quad (z+w)^* = z^* + w^*$

(ii)
$$\{(a + bi) (c + di)\}^* = \{(ac - bd) + (ad + bc)i\}^* = \{(ac - bd) - (ad + bc)i\} = (a - bi) (c - di) = (a + bi)^*(c + di)^* \Leftrightarrow (zw)^* = z^* w^*$$

Complex number plane, or Argand diagram

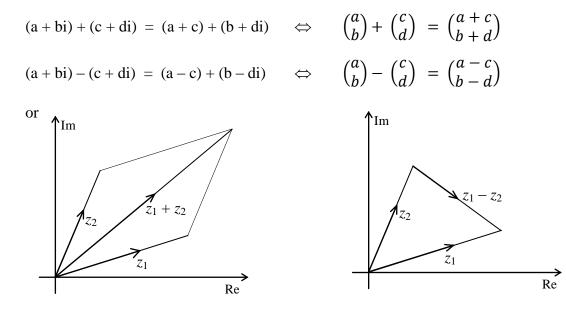
We can represent complex numbers as points on the complex number plane:

3+2i as the point A (3, 2), and -4+3i as the point (-4, 3).



Complex numbers and vectors

Complex numbers under addition (or subtraction) behave just like vectors under addition (or subtraction). We can show complex numbers on the Argand diagram as **either** points **or** vectors.

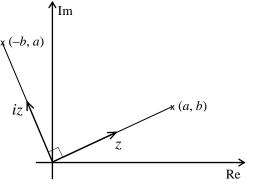


Multiplication by i

i(3+4i) = -4+3i – on an Argand diagram this would have the effect of a positive quarter turn about the origin.

In general;

i(a+bi) = -b+ai



Im

|z|

z = a + bi

Re

Modulus of a complex number

This is just like polar co-ordinates.

The modulus of z is
$$|z|$$
 and

is the length of the complex number

$$|z| = \sqrt{a^2 + b^2}.$$

$$z z^* = (a + bi)(a - bi) = a^2 + b^2$$

$$\Rightarrow z z^* = |z|^2.$$

Argument of a complex number

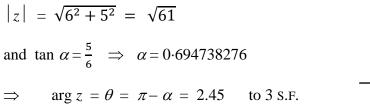
The argument of z is $\arg z =$ the angle made by the complex number with the positive x-axis.

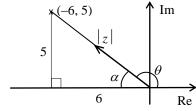
By convention, $-\pi < \arg z \le \pi$.

N.B. Always draw a diagram when finding arg *z*.

Example: Find the modulus and argument of z = -6 + 5i.

Solution: First sketch a diagram (it is easy to get the argument wrong if you don't).





Equality of complex numbers

$$a+bi = c+di \implies a-c = (d-b)i$$

$$\Rightarrow (a-c)^2 = (d-b)^2 i^2 = -(d-b)^2$$

But $(a-c)^2 \ge 0$ and $-(d-b)^2 \le 0$

$$\Rightarrow (a-c)^2 = -(d-b)^2 = 0$$

$$\Rightarrow a = c \text{ and } b = d$$

Thus $a+bi = c+di$

 \Rightarrow real parts are equal (a = c), and imaginary parts are equal (b = d).

Square roots

Example: Find the square roots of 5 + 12i, in the form a + bi, $a, b \in \mathbb{R}$. Solution: Let $\sqrt{5 + 12i} = a + bi$ $\Rightarrow 5 + 12i = (a + bi)^2 = a^2 - b^2 + 2abi$ Equating real parts $\Rightarrow a^2 - b^2 = 5$, I equating imaginary parts $\Rightarrow 2ab = 12 \Rightarrow a = \frac{6}{b}$ Substitute in I $\Rightarrow \left(\frac{6}{b}\right)^2 - b^2 = 5$ $\Rightarrow 36 - b^4 = 5b^2 \Rightarrow b^4 + 5b^2 - 36 = 0$ $\Rightarrow (b^2 - 4)(b^2 + 9) = 0 \Rightarrow b^2 = 4$ $\Rightarrow b = \pm 2$, and $a = \pm 3$ $\Rightarrow \sqrt{5 + 12i} = 3 + 2i$ or -3 - 2i.

Roots of equations

(a) Any polynomial equation with complex coefficients has a complex solution.

The is The Fundamental Theorem of Algebra, and is too difficult to prove at this stage.

Corollary: Any complex polynomial can be factorised into linear factors over the complex numbers.

squaring both sides

(b) If z = a + bi is a root of $\alpha_n z^n + \alpha_{n-1} z^{n-1} + \alpha_{n-2} z^{n-2} + \ldots + \alpha_2 z^2 + \alpha_1 z + \alpha_0 = 0$, and if all the α_i are real, then the conjugate, $z^* = a - bi$ is also a root.

The proof of this result is in the appendix.

- (c) For any polynomial with **real** coefficients, and zeros a + bi, a bi, $(z - (a + bi))(z - (a - bi)) = z^2 - 2az + a^2 - b^2$ will be a quadratic factor in which the coefficients are all **real**.
- (*d*) Using (*a*), (*b*), (*c*), (*d*) we can see that any polynomial with **real** coefficients can be factorised into a mixture of linear and quadratic factors, all of which have **real** coefficients.
- *Example:* Show that 3-2i is a root of the equation $z^3 8z^2 + 25z 26 = 0$. Find the other two roots.

Put z = 3 - 2i in $z^3 - 8z^2 + 25z - 26$ Solution: $(3-2i)^3 - 8(3-2i)^2 + 25(3-2i) - 26$ = $27 - 54i + 36i^{2} - 8i^{3} - 8(9 - 12i + 4i^{2}) + 75 - 50i - 26$ = 27 - 36 - 72 + 32 + 75 - 26 + (-54 + 8 + 96 - 50)i= = 0 + 0i3-2i is a root \Rightarrow \Rightarrow the conjugate, 3 + 2i, is also a root since all coefficients are real $(z - (3 + 2i))(z - (3 - 2i)) = z^2 - 6z + 13$ is a factor. \Rightarrow

Factorising, by inspection,

 $z^{3} - 8z^{2} + 25z - 26 = (z^{2} - 6z + 13)(z - 2) = 0$

 \Rightarrow roots are $z = 3 \pm 2i$, or 2

2 Numerical solutions of equations

Accuracy of solution

When asked to show that a solution is accurate to *n* D.P., you must look at the value of f(x) 'half' below and 'half' above, and conclude that

there is a **change of sign** in the **interval**, and the function is **continuous**, therefore there is a **solution in the interval correct to** *n* **D.P.**

Example: Show that $\alpha = 2.0946$ is a root of the equation $f(x) = x^3 - 2x - 5 = 0$, accurate to 4 D.P.

Solution:

f(2.09455) = -0.0000165..., and f(2.09465) = +0.00997

There is a **change of sign** and *f* is **continuous**

 \Rightarrow there is a root in [2.09455, 2.09465] \Rightarrow root is $\alpha = 2.0946$ to 4 D.P.

Interval bisection

- (i) Find an interval [a, b] which contains the root of an equation f(x) = 0.
- (ii) $x = \frac{a+b}{2}$ is the mid-point of the interval [a, b]

Find $f\left(\frac{a+b}{2}\right)$ to decide whether the root lies in $\left[a, \frac{a+b}{2}\right]$ or $\left[\frac{a+b}{2}, b\right]$.

(iii) Continue finding the mid-point of each subsequent interval to narrow the interval which contains the root.

Example: (i) Show that there is a root of the equation $f(x) = x^3 - 2x - 7 = 0$ in the interval [2, 3]. (ii) Find an interval of width 0.25 which contains the n

(ii) Find an interval of width 0.25 which contains the root.

Solution: (i) f(2) = 8 - 4 - 7 = -3, and f(3) = 27 - 6 - 7 = 14

There is a change of sign and f is continuous \Rightarrow there is a root in [2, 3].

(ii) Mid-point of [2, 3] is x = 2.5, and f(2.5) = 15.625 - 5 - 7 = 3.625

 \Rightarrow root in [2, 2.5]

Mid-point of [2, 2.5] is x = 2.25, and f(2.25) = 11.390625 - 4.5 - 7 = -0.109375

 \Rightarrow root in [2.25, 2.5], which is an interval of width 0.25

Linear interpolation

To solve an equation f(x) using linear interpolation.

First, find an interval which contains a root,

second, assume that the curve is a straight line and use similar triangles to find where it crosses the *x*-axis,

third, repeat the process as often as necessary.

Example:	(i)	Show that there is a root, α , of the equation
		$f(x) = x^3 - 2x - 9 = 0$ in the interval [2, 3].
	(ii)	Use linear interpolation once to find an approximate value of α .
		Give your answer to 3 D.P.

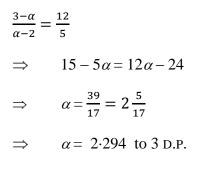
Solution: (i) f(2) = 8 - 4 - 9 = -5, and f(3) = 27 - 6 - 9 = 12

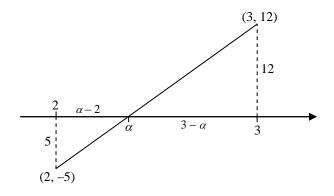
There is a **change of sign** and *f* is **continuous** \Rightarrow there is a root in [2, 3].

(ii) From (i), curve passes through (2, -5) and (3, 12), and we assume that the curve is a straight line between these two points.

Let the line cross the x-axis at $(\alpha, 0)$

Using similar triangles





Newton-Raphson

Suppose that the equation f(x) = 0 has a root at $x = \alpha$, $\Rightarrow f(\alpha) = 0$

To find an approximation for this root, we first find a value x = a near to $x = \alpha$ (decimal search).

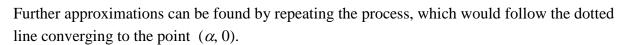
In general, the point where the tangent at P, x = a, meets the *x*-axis, x = b, will give a better approximation.

At *P*, x = a, the gradient of the tangent is f'(a),

and the gradient of the tangent is also $\frac{PM}{NM}$.

$$PM = y = f(a)$$
 and $NM = a - b$

$$\Rightarrow f'(a) = \frac{PM}{NM} = \frac{f(a)}{a-b} \Rightarrow b = a - \frac{f(a)}{f'(a)}.$$



This formula can be written as the iteration $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Example: (i) Show that there is a root, α , of the equation $f(x) = x^3 - 2x - 5 = 0$ in the interval [2, 3].

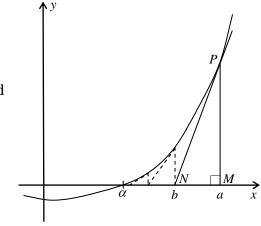
(ii) Starting with $x_0 = 2$, use the Newton-Raphson formula to find x_1 , x_2 and x_3 , giving your answers to 3 D.P. where appropriate.

Solution: (i)
$$f(2) = 8 - 4 - 5 = -1$$
, and $f(3) = 27 - 6 - 5 = 16$

There is a **change of sign** and *f* is **continuous** \Rightarrow there is a root in [2, 3].

(ii)
$$f(x) = x^3 - 2x - 5 \implies f'(x) = 3x^2 - 2$$

 $\Rightarrow \quad x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{8 - 4 - 5}{12 - 2} = 2 \cdot 1$
 $\Rightarrow \quad x_2 = 2 \cdot 094568121 = 2 \cdot 095$
 $\Rightarrow \quad x_3 = 2 \cdot 094551482 = 2 \cdot 095$



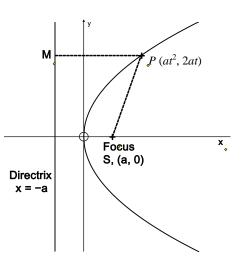
3 Coordinate systems

Parabolas

 $y^2 = 4ax$ is the equation of a parabola which passes through the origin and has the *x*-axis as an axis of symmetry.

Parametric form

 $x = at^2$, y = 2at satisfy the equation for all values of *t*. *t* is a parameter, and these equations are the parametric equations of the parabola $y^2 = 4ax$.



Focus and directrix

The point S(a, 0) is the *focus*, and

the line x = -a is the *directrix*.

Any point P of the curve is equidistant from the focus and the directrix, PM = PS.

Proof:
$$PM = at^{2} - (-a) = at^{2} + a$$

 $PS^{2} = (at^{2} - a)^{2} + (2at)^{2} = a^{2}t^{4} - 2a^{2}t^{2} + a^{2} + 4a^{2}t^{2}$
 $= a^{2}t^{4} + 2a^{2}t^{2} + a^{2} = (at^{2} + a)^{2} = PM^{2}$
 $\Rightarrow PM = PS.$

Gradient

For the parabola $y^2 = 4ax$, with general point *P*, $(at^2, 2at)$, we can find the gradient in two ways:

1.
$$y^2 = 4ax$$

 $\Rightarrow 2y \frac{dy}{dx} = 4a \Rightarrow \frac{dy}{dx} = \frac{2a}{y}$
2. At P, $x = at^2$, $y = 2at$
 $\Rightarrow \frac{dy}{dt} = 2a$, $\frac{dx}{dt} = 2at$
 $\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}$

Tangents and normals

Example: Find the equations of the tangents to $y^2 = 8x$ at the points where x = 18, and show that the tangents meet on the *x*-axis.

Solution:
$$x = 18 \implies y^2 = 8 \times 18 \implies y = \pm 12$$

 $2y \frac{dy}{dx} = 8 \implies \frac{dy}{dx} = \pm \frac{1}{3}$ since $y = \pm 12$
 \Rightarrow tangents are $y - 12 = \frac{1}{3}(x - 18) \implies x - 3y + 18 = 0$ at (18, 12)
and $y + 12 = -\frac{1}{3}(x - 18) \implies x + 3y + 18 = 0.$ at (18, -12)

To find the intersection, add the equations to give

$$2x + 36 = 0 \implies x = -18 \implies y = 0$$

 \Rightarrow tangents meet at (-18, 0) on the x-axis.

Example: Find the equation of the normal to the parabola given by $x = 3t^2$, y = 6t.

Solution: $x = 3t^2$, $y = 6t \Rightarrow \frac{dx}{dt} = 6t$, $\frac{dy}{dt} = 6$, $\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6}{6t} = \frac{1}{t}$ \Rightarrow gradient of the normal is -t

 \Rightarrow equation of the normal is $y - 6t = -t(x - 3t^2)$.

Notice that this 'general equation' gives the equation of the normal for any particular value of *t*:- when t = -3 the normal is $y + 18 = 3(x - 27) \iff y = 3x - 99$.

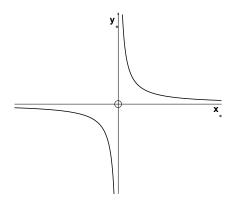
Rectangular hyperbolas

A *rectangular* hyperbola is a hyperbola in which the asymptotes meet at 90° .

 $xy = c^2$ is the equation of a rectangular hyperbola in which the *x*-axis and *y*-axis are perpendicular asymptotes.

Parametric form

x = ct, $y = \frac{c}{t}$ are parametric equations of the hyperbola $xy = c^2$.



Tangents and normals

Example: Find the equation of the tangent to the hyperbola xy = 36 at the points where x = 3.

Solution:
$$x = 3 \implies 3y = 36 \implies y = 12$$

 $y = \frac{36}{x} \implies \frac{dy}{dx} = -\frac{36}{x^2} = -4$ when $x = 3$
 \Rightarrow tangent is $y - 12 = -4(x - 3) \implies 4x + y - 24 = 0.$

Example: Find the equation of the normal to the hyperbola given by x = 3t, $y = \frac{3}{t}$.

Solution: x = 3t, $y = \frac{3}{t} \implies \frac{dx}{dt} = 3$, $\frac{dy}{dt} = \frac{-3}{t^2}$ $\implies \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{-3}{t^2}}{3} = \frac{-1}{t^2}$

$$\Rightarrow$$
 gradient of the normal is t^2

⇒ equation of the normal is $y - \frac{3}{t} = t^2(x - 3t)$ ⇒ $t^3x - y = 3t^4 - 3$.

4 Matrices

You must be able to add, subtract and multiply matrices.

Order of a matrix

An $r \times c$ matrix has r rows and c columns;

the fi \mathbf{R} st number is the number of \mathbf{R} ows

the seCond number is the number of Columns.

Identity matrix

The identity matrix is $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Note that MI = IM = M for any matrix M.

Determinant and inverse

Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then the *determinant* of M is

Det M = |M| = ad - bc.

To find the *inverse* of $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Note that $\boldsymbol{M}^{-1}\boldsymbol{M} = \boldsymbol{M}\boldsymbol{M}^{-1} = \boldsymbol{I}$

- (i) Find the determinant, ad bc. If ad bc = 0, there is no inverse.
- (ii) Interchange *a* and *d* (the leading diagonal) Change sign of *b* and *c*, (the other diagonal) Divide all elements by the determinant, ad - bc.

$$\Rightarrow \qquad M^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Check:

$$\boldsymbol{M}^{-1}\boldsymbol{M} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} da - bc & 0 \\ 0 & -bc + ad \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \boldsymbol{M}$$

Similarly we could show that $MM^{-1} = I$.

Example: $M = \begin{pmatrix} 4 & 2 \\ 5 & 3 \end{pmatrix}$ and $MN = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$. Find N. Solution: Notice that $M^{-1}(MN) = (M^{-1}M)N = IN = N$ multiplying on the left by M^{-1} But $MNM^{-1} \neq IN$ we cannot multiply on the right by M^{-1} First find M^{-1} Det $M = 4 \times 3 - 2 \times 5 = 2 \implies M^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$ Using $M^{-1}(MN) = IN = N$ $\implies N = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -7 & 4 \\ 13 & -6 \end{pmatrix} = \begin{pmatrix} -3.5 & 2 \\ 6.5 & -3 \end{pmatrix}$.

Singular and non-singular matrices

If det A = 0, then A is a singular matrix, and A^{-1} does not exist.

If det $A \neq 0$, then A is a *non-singular matrix*, and A^{-1} exists

Linear Transformations

A matrix can represent a transformation, but the point must be written as a column vector before multiplying by the matrix.

Example: The image of (2, 3) under
$$T = \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix}$$
 is given by $\begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 23 \\ 8 \end{pmatrix}$

$$\Rightarrow$$
 the image of (2, 3) is (23, 8).

Note that the image of (0, 0) is always (0, 0)

 \Leftrightarrow the **origin never moves** under a matrix (linear) transformation

Basis vectors

The vectors $\underline{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\underline{i} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are called *basis* vectors, and are particularly important in describing the geometrical effect of a matrix, and in finding the matrix for a particular geometric transformation.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix} \text{ and } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}$$
$$\underline{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} a \\ c \end{pmatrix}, \text{ the first column, and } \underline{i} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} b \\ d \end{pmatrix}, \text{ the second column}$$

This is a more important result than it seems!

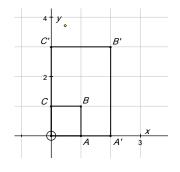
Finding the geometric effect of a matrix transformation

We can easily write down the images of \underline{i} and \underline{j} , sketch them and find the geometrical transformation.

Example: Find the geometrical effect of the matrix $T = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$

Solution: Find images of $\underline{i}, \underline{i}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and show on a sketch. Make sure that you letter the points

 $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 3 \end{pmatrix}$

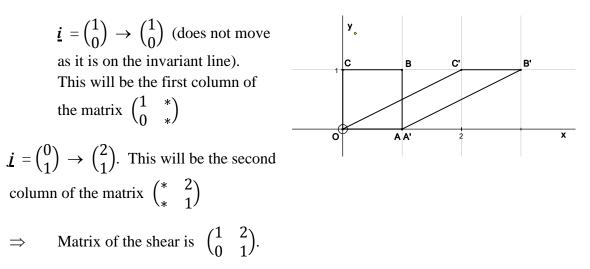


From sketch we can see that the transformation is a two-way stretch, of factor 2 parallel to the *x*-axis and of factor 3 parallel to the *y*-axis.

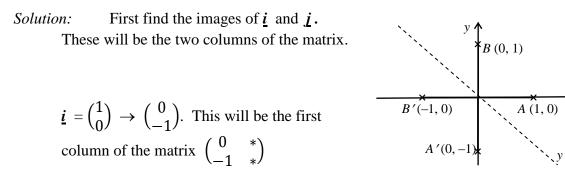
Finding the matrix of a given transformation.

Example: Find the matrix for a shear with factor 2 and invariant line the *x*-axis.

Solution: Each point is moved in the x-direction by a distance of $(2 \times \text{its } y\text{-coordinate})$.



Example: Find the matrix for a reflection in the line y = -x.



 $\underline{i} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 \\ 0 \end{pmatrix}.$ This will be the second column of the matrix $\begin{pmatrix} * & -1 \\ * & 0 \end{pmatrix}$ $\Rightarrow \qquad \text{Matrix of the reflection is } \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$

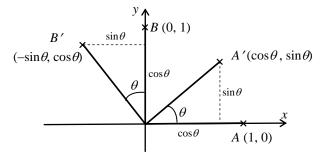
Rotation matrix

From the diagram we can see that

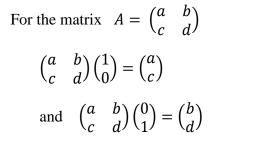
$$\underline{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix},$$
$$\underline{i} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$$

These will be the first and second columns of the matrix

$$\Rightarrow \quad \text{matrix is } R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$



Determinant and area factor



 \Rightarrow the unit square is mapped on to the parallelogram as shown in the diagram.

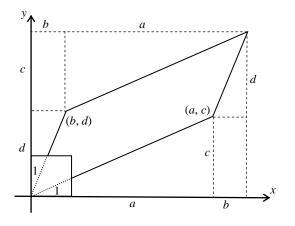
The area of the unit square = 1.

The area of the parallelogram = $(a + b)(c + d) - 2 \times (bc + \frac{1}{2}ac + \frac{1}{2}bd)$

$$= ac + ad + bc + bd - 2bc - ac - bd$$
$$= ad - bc = \det A.$$

All squares of the grid are mapped onto congruent parallelograms

 \Rightarrow area factor of the transformation is det A = ad - bc.



5 **Series**

You need to know the following sums

$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$$

$$= \left(\frac{1}{2}n(n+1)\right)^2 = \left(\sum_{r=1}^{n} r\right)^2$$
a fluke, but it is
Example: Find $\sum_{r=1}^{n} r(r^2 - 3)$.
Solution: $\sum_{r=1}^{n} r(r^2 - 3) = \sum_{r=1}^{n} r^3 - 3\sum_{r=1}^{n} r$

$$= \frac{1}{4}n^2(n+1)^2 - 3 \times \frac{1}{2}n(n+1)$$

helps to remember it

$$\begin{array}{rcl} \text{unple.} & \text{Find} & \sum_{r=1}^{n} r(r-3). \\ \text{lution:} & \sum_{r=1}^{n} r(r^2-3) = \sum_{r=1}^{n} r^3 - 3 \sum_{r=1}^{n} r^3 -$$

Example: Find $S_n = 2^2 + 4^2 + 6^2 + \ldots + (2n)^2$.

Solution:
$$S_n = 2^2 + 4^2 + 6^2 + \dots + (2n)^2 = 2^2(1^2 + 2^2 + 3^2 + \dots + n^2)$$

= $4 \times \frac{1}{6}n(n+1)(2n+1) = \frac{2}{3}n(n+1)(2n+1)$.

Example: Find $\sum_{r=5}^{n+2} r^2$ Solution: $\sum_{r=5}^{n+2} r^2 = \sum_{r=1}^{n+2} r^2 - \sum_{r=1}^4 r^2$

notice that the top limit is 4 **not** 5

6 Proof by induction

1. Show that the result/formula is true for n = 1 (and sometimes n = 2, 3..). Conclude

"therefore the result/formula is true for n = 1".

2. Make induction assumption

"Assume that the result/formula is true for n = k". Show that the result/formula must then be true for n = k + 1Conclude "therefore the result/formula is true for n = k + 1".

3. Final conclusion

"therefore the result/formula is true for all positive integers, n, by mathematical induction".

Summation

Example: Use mathematical induction to prove that

$$S_n = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

Solution: When n = 1, $S_1 = 1^2 = 1$ and $S_1 = \frac{1}{6} \times 1(1+1)(2 \times 1+1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$

$$\Rightarrow \qquad S_n = \frac{1}{6}n(n+1)(2n+1) \quad \text{is true for } n=1.$$

Assume that the formula is true for n = k

$$\Rightarrow S_k = 1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{1}{6}k(k+1)(2k+1)$$

$$\Rightarrow S_{k+1} = 1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= \frac{1}{6}(k+1)\{k(2k+1) + 6(k+1)\}$$

$$= \frac{1}{6}(k+1)\{2k^2 + 7k + 6\} = \frac{1}{6}(k+1)(k+2)(2k+3)$$

$$= \frac{1}{6}(k+1)\{(k+1) + 1\}\{2(k+1) + 1\}$$

 \Rightarrow The formula is true for n = k + 1

 $\Rightarrow S_n = \frac{1}{6}n(n+1)(2n+1)$ is true for all positive integers, *n*, by mathematical induction.

Recurrence relations

Example: A sequence, 4, 9, 19, 39, ... is defined by the recurrence relation

 $u_1 = 4$, $u_{n+1} = 2u_n + 1$. Prove that $u_n = 5 \times 2^{n-1} - 1$.

Solution: When n = 1, $u_1 = 4$, and $u_1 = 5 \times 2^{1-1} - 1 = 5 - 1 = 4$, \Rightarrow formula true for n = 1.

Assume that the formula is true for n = k, $\Rightarrow u_k = 5 \times 2^{k-1} - 1$.

From the recurrence relation,

- $u_{k+1} = 2u_k + 1 = 2(5 \times 2^{k-1} 1) + 1$
- \Rightarrow $u_{k+1} = 5 \times 2^k 2 + 1 = 5 \times 2^{(k+1)-1} 1$
- \Rightarrow the formula is true for n = k + 1
- \Rightarrow the formula is true for all positive integers, *n*, by mathematical induction.

Divisibility problems

Considering f(k + 1) - f(k), will often lead to a proof,

but a more reliable way is to consider $f(k+1) - m \times f(k)$, where m is chosen to eliminate the exponential term.

Example: Prove that $f(n) = 5^n - 4n - 1$ is divisible by 16 for all positive integers, n.

Solution: When n = 1, $f(1) = 5^1 - 4 - 1 = 0$, which is divisible by 16, and so f(n) is divisible by 16 when n = 1.

Assume that the result is true for n = k, $\Rightarrow f(k) = 5^k - 4k - 1$ is divisible by 16.

Considering $f(k+1) - 5 \times f(k)$ we will eliminate the 5^k term.

$$f(k+1) - 5 \times f(k) = (5^{k+1} - 4(k+1) - 1) - 5 \times (5^k - 4k - 1)$$
$$= 5^{k+1} - 4k - 4 - 1 - 5^{k+1} + 20k + 5 = 16k$$

 $\Rightarrow f(k+1) = 5 \times f(k) + 16k$

Since f(k) is divisible by 16 (induction assumption), and 16k is divisible by 16, then f(k+1) must be divisible by 16,

 \Rightarrow the result is true for n = k + 1

 \Rightarrow $f(n) = 5^n - 4n - 1$ is divisible by 16 for all positive integers, *n*, by mathematical induction.

Example: Prove that $f(n) = 2^{2n+3} + 3^{2n-1}$ is divisible by 5 for all positive integers *n*.

Solution: When n = 1, $f(1) = 2^{2+3} + 3^{2-1} = 32 + 3 = 35 = 5 \times 7$, and so the result is true for n = 1.

Assume that the result is true for n = k

$$\Rightarrow f(k) = 2^{2k+3} + 3^{2k-1}$$
 is divisible by 5

We could consider either

$$f(k+1) - 2^{2} \times f(k), \text{ which would eliminate the } 2^{2k+3} \text{ term } \mathbf{I}$$

or $f(k+1) - 3^{2} \times f(k), \text{ which would eliminate the } 3^{2k-1} \text{ term } \mathbf{II}$
$$\mathbf{I} \Rightarrow f(k+1) - 2^{2} \times f(k) = 2^{2(k+1)+3} + 3^{2(k+1)-1} - 2^{2} \times (2^{2k+3} + 3^{2k-1})$$
$$= 2^{2k+5} + 3^{2k+1} - 2^{2k+5} - 2^{2} \times 3^{2k-1}$$
$$\Rightarrow f(k+1) - 4 \times f(k) = 9 \times 3^{2k-1} - 4 \times 3^{2k-1} = 5 \times 3^{2k-1}$$
$$\Rightarrow f(k+1) = 4 \times f(k) - 5 \times 3^{2k-1}$$

Since f(k) is divisible by 5 (induction assumption), and $5 \times 3^{2k-1}$ is divisible by 5, then f(k+1) must be divisible by 5.

 \Rightarrow $f(n) = 2^{2n+3} + 3^{2n-1}$ is divisible by 5 for all positive integers, *n*, by mathematical induction.

Powers of matrices

Example: If $M = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}$, prove that $M^n = \begin{pmatrix} 2^n & 1-2^n \\ 0 & 1 \end{pmatrix}$ for all positive integers *n*. Solution: When n = 1, $M^1 = \begin{pmatrix} 2^1 & 1-2^1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = M$

 \Rightarrow the formula is true for n = 1.

Assume the result is true for $n = k \implies M^k = \begin{pmatrix} 2^k & 1 - 2^k \\ 0 & 1 \end{pmatrix}$.

$$M^{k+1} = MM^{k} = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2^{k} & 1-2^{k} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 \times 2^{k} & 2-2 \times 2^{k} - 1 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \qquad M^{k+1} = \begin{pmatrix} 2^{k+1} & 1-2^{k+1} \\ 0 & 1 \end{pmatrix} \Rightarrow \text{ The formula is true for } n = k+1$$

 $\Rightarrow \qquad M^n = \begin{pmatrix} 2^n & 1-2^n \\ 0 & 1 \end{pmatrix} \text{ is true for all positive integers, } n, \text{ by mathematical induction.}$

7 Appendix

Complex roots of a real polynomial equation

Preliminary results:

I $(z_1 + z_2 + z_3 + z_4 + \dots + z_n)^* = z_1^* + z_2^* + z_3^* + z_4^* + \dots + z_n^*,$ by repeated application of $(z + w)^* = z^* + w^*$

$$\mathbf{II} \qquad (z^{n})^{*} = (z^{*})^{n}$$

$$(zw)^{*} = z^{*}w^{*}$$

$$\Rightarrow (z^{n})^{*} = (z^{n-1}z)^{*} = (z^{n-1})^{*}(z)^{*} = (z^{n-2}z)^{*}(z)^{*} = (z^{n-2})^{*}(z)^{*}(z)^{*} \dots = (z^{*})^{n}$$

Theorem: If z = a + bi is a root of $\alpha_n z^n + \alpha_{n-1} z^{n-1} + \alpha_{n-2} z^{n-2} + \ldots + \alpha_2 z^2 + \alpha_1 z + \alpha_0 = 0$, and if all the α_i are real, then the conjugate, $z^* = a - bi$ is also a root.

$$\begin{array}{lll} \textit{Proof:} & \text{If } z = a + bi \text{ is a root of the equation } \alpha_n z^n + \alpha_{n-1} z^{n-1} + \ldots + \alpha_1 z + \alpha_0 = 0 \\ & \text{then } & \alpha_n z^n + \alpha_{n-1} z^{n-1} + \ldots + \alpha_2 z^2 + \alpha_1 z + \alpha_0 = 0 \\ & \Rightarrow & (\alpha_n z^n + \alpha_{n-1} z^{n-1} + \ldots + \alpha_2 z^2 + \alpha_1 z + \alpha_0)^* = 0 & \text{since } 0^* = 0 \\ & \Rightarrow & (\alpha_n z^n)^* + (\alpha_{n-1} z^{n-1})^* + \ldots + (\alpha_2 z^2)^* + (\alpha_1 z)^* + (\alpha_0)^* = 0 & \text{using } \mathbf{I} \\ & \Rightarrow & \alpha_n^* (z^n)^* + \alpha_{n-1}^* (z^{n-1})^* + \ldots + \alpha_2^* (z^2)^* + \alpha_1^* (z)^* + \alpha_0^* = 0 & \text{since } (zw)^* = z^* w^* \\ & \Rightarrow & \alpha_n (z^n)^* + \alpha_{n-1} (z^{n-1})^* + \ldots + \alpha_2 (z^2)^* + \alpha_1 (z)^* + \alpha_0 = 0 & \alpha_i \text{ real } \Rightarrow \alpha_i^* = \alpha_i \\ & \Rightarrow & \alpha_n (z^n)^* + \alpha_{n-1} (z^n)^{n-1} + \ldots + \alpha_2 (z^n)^2 + \alpha_1 (z^n)^* + \alpha_0 = 0 & \text{using } \mathbf{I} \end{array}$$

 \Rightarrow $z^* = a - bi$ is also a root of the equation.

Formal definition of a linear transformation

A linear transformation *T* has the following properties:

(i)
$$T\begin{pmatrix}kx\\ky\end{pmatrix} = kT\begin{pmatrix}x\\y\end{pmatrix}$$

(ii) $T\begin{pmatrix}x_1\\y_1+x_2\\y_2\end{pmatrix} = T\begin{pmatrix}x_1\\y_1\end{pmatrix} + T\begin{pmatrix}x_2\\y_2\end{pmatrix}$

It can be shown that **any** matrix transformation is a linear transformation, and that **any** linear transformation can be represented by a matrix.

Derivative of x^n , for any integer

We can use proof by induction to show that $\frac{d}{dx}(x^n) = nx^{n-1}$, for any integer *n*.

1) We know that the derivative of x^0 is 0 which equals $0x^{-1}$,

since $x^0 = 1$, and the derivative of 1 is 0

$$\Rightarrow \quad \frac{d}{dx}(x^n) = nx^{n-1} \text{ is true for } n = 0.$$

2) We know that the derivative of x^1 is 1 which equals $1 \times x^{1-1}$

$$\Rightarrow \frac{d}{dx}(x^n) = nx^{n-1}$$
 is true for $n = 1$

Assume that the result is true for n = k

$$\Rightarrow \frac{d}{dx}(x^{k}) = kx^{k-1}$$

$$\Rightarrow \frac{d}{dx}(x^{k+1}) = \frac{d}{dx}(x \times x^{k}) = x \times \frac{d}{dx}(x^{k}) + 1 \times x^{k}$$
product rule
$$\Rightarrow \frac{d}{dx}(x^{k+1}) = x \times kx^{k-1} + x^{k} = kx^{k} + x^{k} = (k+1)x^{k}$$

$$\Rightarrow \frac{d}{dx}(x^{n}) = nx^{n-1}$$
is true for $n = k + 1$

$$\Rightarrow \frac{d}{dx}(x^{n}) = nx^{n-1}$$
 is true for all positive integers, *n*, by mathematical induction.

3) We know that the derivative of x^{-1} is $-x^{-2}$ which equals $-1 \times x^{-1-1}$

$$\Rightarrow \quad \frac{d}{dx}(x^n) = nx^{n-1}$$
 is true for $n = -1$

Assume that the result is true for n = k

$$\Rightarrow \quad \frac{d}{dx}(x^k) = kx^{k-1}$$

$$\Rightarrow \quad \frac{d}{dx}(x^{k-1}) = \frac{d}{dx}\left(\frac{x^k}{x}\right) = \frac{x \times \frac{d}{dx}(x^k) - x^k \times 1}{x^2} \qquad \text{quotient rule}$$

$$\Rightarrow \quad \frac{d}{dx}(x^{k+1}) = \frac{x \times kx^{k-1} - x^k}{x^2} = \frac{(k-1)x^k}{x^2} = (k-1)x^{k-2} = (k-1)x^{(k-1)-1}$$

$$\Rightarrow \quad \frac{d}{dx}(x^n) = nx^{n-1} \text{ is true for } n = k-1$$

We are going backwards (from n = k to n = k - 1), and, since we started from n = -1, $\Rightarrow \frac{d}{dx}(x^n) = nx^{n-1}$ is true for all negative integers, *n*, by mathematical induction.

Putting 1), 2) and 3), we have proved that

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
, for **any** integer *n*.

8 Index

Appendix, 22 Complex numbers Argand diagram, 4 argument, 5 arithmetical operations, 3 complex conjugate, 3 complex number plane, 4 definitions, 3 equality, 6 modulus, 5 multiplication by *i*, 5 polynomial equations, 6 similarity with vectors, 4 square roots, 6 Complex roots of a real polynomial equation, 22 Derivative of x^n , for any integer, 23 Determinant area factor, 17 Linear transformation formal definition, 22 **Matrices** determinant, 14 identity matrix, 14 inverse matrix, 14 non-singular, 15 order, 14 singular, 15 Matrix transformations area factor, 17 basis vectors, 15 finding matrix for, 16 geometric effect, 16 rotation matrix. 17

Numerical solutions of equations accuracy of solution, 8 interval bisection, 8 linear interpolation, 9 Newton Raphson method, 10 Parabolas directrix, 11 focus, 11 gradient - parametric form, 11 normal - parametric form, 12 parametric form, 11 tangent - parametric form, 12 Proof by induction divisibility problems, 20 general principles, 19 powers of matrices, 21 recurrence relations, 20 summation, 19 Rectangular hyperbolas gradient - parametric form, 13 parametric form, 12 tangent - parametric form, 13 Series standard summation formulae, 18 Transformations area factor, 17 basis vectors, 15 finding matrix for, 16 geometric effect, 16 linear transformations, 15 matrices, 16 rotation matrix, 17