Further Maths GCSE Trigonometry Answers

1. $\tan x=\frac{12-5 \sqrt{3}}{1+\sqrt{3}-5}$ ratonalio deramiato

$$
\begin{aligned}
& \frac{(12-5 \sqrt{3}) \times\left(\frac{(4+\sqrt{3}+5)}{(1+\sqrt{3}+5)}\right.}{(1+\sqrt{3}+5)}=\frac{1+8 \sqrt{3}-25 \sqrt{3}-60+60}{48-25} \\
&=\frac{23 \sqrt{3}}{23}=\sqrt{3} . \\
& \tan x=\sqrt{3} \Rightarrow x=60^{\circ}
\end{aligned}
$$

2. Area of triange $=\frac{1}{2}(1+\sqrt{3}-6)(2-\sqrt{3}) \sin A$

$$
\begin{aligned}
& =1 / 2[8 \sqrt{3}+6 \sqrt{3}-12-12]+14 \\
& =1+\sqrt{3}
\end{aligned}
$$

2. $\quad \frac{\sin A}{2-\sqrt{3}}=\frac{\sin B}{1+\sqrt{3}-6}$

$$
\begin{aligned}
\sin B & =\frac{1 / 4(1+\sqrt{3}-6)}{2-\sqrt{3}} \times \frac{(2+\sqrt{3})}{(2+\sqrt{3})} \\
& =\frac{1 / 4(2 \sqrt{3})}{1}=\frac{\sqrt{3}}{2} \\
\text { so } \sin B & =\frac{\sqrt{3}}{2} \text { so } B=60^{\circ}
\end{aligned}
$$

3.

$$
\underbrace{\frac{100}{}}_{\sqrt{3}} \text { si60 }=\frac{0}{\eta}=\frac{\sqrt{3}}{2}
$$

4.

$$
\begin{aligned}
& \quad D C A=120^{\circ} \text { so } b A C=15^{\circ} \\
& \text { so } A C \times 5260=3 \sqrt{2} \times 54+5 \quad[=A B] \\
& \frac{\sqrt{3}}{2} \times A C=3 \sqrt{2} \times \frac{1}{\sqrt{2}} \\
& \text { so } A C=2 \sqrt{3} . \\
& \quad \text { [codd ose siverate] } \\
& B C=A C \times \cos 60=2 \sqrt{3} \times 1 / 2=\sqrt{3} .
\end{aligned}
$$

h ABD osving Pythegre::

$$
\begin{aligned}
(3 \sqrt{2})^{2} & =(x+\sqrt{3})^{2}+3^{2} \\
18= & x^{2}+2 \sqrt{3} x+3+9 \\
& x^{2}+2 \sqrt{3} x-6=0
\end{aligned}
$$

$$
x=\frac{-2 \sqrt{3} \pm \sqrt{(12+24)}}{2}=\underline{-\sqrt{3}+3} \quad[x>0]
$$

5.

$$
\begin{aligned}
& c x=\sqrt{10^{2}+12^{2}} \div 2 \\
&=\sqrt{61} \\
& \begin{aligned}
v x & =\sqrt{14^{2}-(\sqrt{61})^{2}} \\
& =\sqrt{135} \quad=3 \sqrt{15}=11.6 \mathrm{~cm} \\
\cos \alpha & =\frac{\sqrt{61}}{14} \quad \alpha=56.1^{\circ}
\end{aligned}
\end{aligned}
$$

6. Let M = midpoit of $A C$

$$
\cos \alpha=8112 \Rightarrow \alpha=48.2^{\circ}
$$

7.

$$
\begin{aligned}
& 1 / 2 a b \operatorname{sic} C=\text { Ara } \\
& 1 / 2 \times 10 \times 18 \times \operatorname{sip}=27 \\
& \sin P=0.3
\end{aligned}
$$

$$
P=\sin ^{-1}(0.3)=17.5^{\circ} \text { bat } P \text { is obtuse }
$$

$$
\text { so } P=180-17.5
$$

$$
=162.5^{\circ}
$$

$$
\begin{aligned}
C b=33.0 \mathrm{~m} & \quad B D=\frac{12}{\tan 23}=28.3 \quad C B=\frac{12}{\tan 35}=171 \\
\text { Bearing of } D \text { fran } C & =90+\tan ^{-1} \frac{28.3}{17.1} \\
& =149^{\circ}
\end{aligned}
$$

9. $A C^{2}=8^{2}+14^{2} \Rightarrow A C=2 \sqrt{65}$

$$
\theta=\tan ^{-1} \frac{7}{2 \sqrt{65}}=23.5^{\circ}
$$

10.

$$
\begin{aligned}
B N & =\sqrt{ }\left(1+5^{2}+6^{2}\right) \\
& =7.5 .
\end{aligned}
$$

11. $(A)^{2}=5^{2}+3^{2} \quad A X=\sqrt{3}+$

$$
\theta=\tan ^{-1}\left(\frac{5}{34}\right)=40.6
$$

tet

$$
M=\text { midpout of } R Q \text {. } \alpha=\tan ^{-1}\left(\frac{2}{5}\right)=21 \cdot 8
$$

