Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2015

Further Mathematics

8360/2

Level 2

Paper 2 Calculator

Friday 19 June 2015 9.00 am to 11.00 am

For this paper you must have:

- a calculator
- mathematical instruments.

Time allowed

• 2 hours

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

	Answer all questions in the spaces provided.
1	A circle, centre $(0,0)$, has circumference 12π
	Work out the equation of the circle. [2 marks]
	Answer
2	a:b:c=5:3:2 Work out $4a-c:3b$ Give your answer in its simplest form.
	[2 marks]
	Answer :

0 3

Turn over ▶

3	The distance between the points $(2, 5p)$ and $(2, -10)$ is 30 units.
	Work out the two possible values of p . [3 marks]
	Answerand

4	The first term of a sequence is $1-a$
	The term-to-term rule of a sequence is
	add 2a then multiply by 3
4 (a)	Show that the second term is $3+3a$
	[1 mark]
4 (b)	The third term is 16
4 (b)	Work out the value of a .
	[3 marks]
	Answer

6	Write	$\frac{15x^8 - 18x^7}{3x^2}$	in the form a	$ax^n - nx^a$	where a and n are int	
						[2 marks]
7	$y = \frac{2}{3}x^6 -$	8 <i>x</i> ³				
	Work out t	the rate of change	\mathbf{e} of y with resp	pect to x w	when $x = -1$	[2 marks]
						[3 marks]
		Answer .				

8 (a)	$f(x) = x^4$ The domain of $f(x)$ is $x \ge 2$	
	Work out the range of $f(x)$.	[1 mark]
	Answer	
8 (b)	$g(x) = x^2 - 1$ The domain of $g(x)$ is $-2 \le x \le 3$	
	Work out the range of $g(x)$.	[2 marks]
	Answer	
8 (c)	h(x) = 5x - 3 The range of $h(x)$ is $-2 < h(x) < 1$	
	Work out the domain of $h(x)$.	[2 marks]
	Answer	

9 (a)	Solve	6(2y - 3) - 10 = 2y	[3 marks]
		<i>y</i> =	
9 (b)	Solve	$\frac{\sqrt{w+4}}{2} = 6$	[3 marks]
		$w = \dots$	
9 (c)	Solve	$3m^{\frac{1}{5}} + 9 = 0$	
			[2 marks]
		$m = \dots$	

The diagram shows a circle, centre ${\it C.}$ 10 TP is a tangent to the circle at P. Not drawn accurately P(2, 8)C(3, 6)0 Work out the value of t. [4 marks]

11 (a)	Expand and simplify	(3w+2y)(w-4y)	[3 marks]
	Ans	wer	
11 (b)	Expand and simplify	$\frac{3}{x^2}\left(\frac{x}{3}+3x^2-1\right)$	[3 marks]
	Ansv	wer	

12	The area of the triangle is equal to the area of the All dimensions are in centimetres.	The area of the triangle is equal to the area of the square. All dimensions are in centimetres.						
		Not drawn accurately						
	y 30° x	X						
	Write y in terms of x .	[2 marks]						
	Answer							

The diagram shows a circle, centre *P*, and a straight line passing through points *P* and *Q*.

Q lies on the *y*-axis and on the circumference of the circle.

The equation of the circle is

$$(x-3)^2 + y^2 = 25$$

Work out the equation of the straight line through P and Q. Give your answer in the form ax + by + c = 0 where a, b and c are integers.

[4 marks]

1 3

Turn over ▶

14		PQR is a straight line. PQ: QR is 2:3	
			Not drawn accurately
	<i>y</i> 🛕		R(a, 7)
		Q(6, 9b)	
		P(3, b)	
_	0		x
14 (a	1)	Show that $a = 10.5$	[2 marks]

14 (b)	Work out the value of b .		[3 marks]
			[0
	Answer		
15	Use algebra to prove that the value of values of c .	$\frac{8c^2 + 16}{3c^2 + 6} + \frac{1}{3}$	is an integer for all
	1.5.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		[3 marks]

16	The diagram shows a rectangle with area 9 cm ²	
	x cm	Not drawn accurately
	(2x-1) cm	
	Set up and solve an equation to work out the value of x . Give your answer to 3 significant figures.	[5 marks]
	<i>x</i> =	

17 ABCDEFGH is a cuboid.

 $HB=34\ cm$

HD = 16 cm

AD = 18 cm

17 (a) Work out the length of *AB*.

Answer......cm

17 (b) Work out the angle between *HB* and *ABCD*.

Answer...... degrees

10

[2 marks]

[3 marks]

The sketch shows the quadratic curve $y = 4(x-a)^2 + b$ The curve passes through (0, 10) and (2, 10)

Not drawn accurately

18 (a) Give reasons why the value of a is 1.

[2 marks]

18 (b)	Work out the value of b .	[2 marks]
	Answer	
18 (c)	Write the equation of the curve in the form $y = px^2 + qx + r$	[2 marks]
	Answer	
19	Use the factor theorem to show that $(x-3)$ is not a factor of x^3-1	10 <i>x</i> – 3 [2 marks]

The transformation matrix \textbf{P} represents a 90° anti-clockwise rotation about	the origin.
Describe fully the \textbf{single} transformation represented by the matrix \textbf{P}^3	[2 marks]
The transformation matrix Q is $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
The transformation matrix R is $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	
Describe fully the single transformation represented by the matrix QR .	[2 marks]
	The transformation matrix \mathbf{Q} is $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ The transformation matrix \mathbf{R} is $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

A cubic curve has
a maximum point at A $(-4, 10)$ a minimum point at B $(2, -26)$
The tangent to the curve at A and the normal to the curve at B intersect at point C.
Work out the area of triangle <i>ABC</i> . You may sketch a diagram to help you. [3 marks]
Answersquare units

2 1

Turn over ▶

22	A quadratic sequ	ence starts			
	302	600	894	1184	
22 (a)	Work out an exp	ression for the <i>n</i>	th term.		[3 marks]
		Answer			
22 (b)	A term in the sec	uence has valu	e 0		
	Find the position	of this term.			ro
					[2 marks]
		Answer			

The continuous curve y = f(x) has exactly **two** stationary points.

P is a maximum point when x = a

Q is a stationary point of inflection when x = b

a < b

Which of these is correct?

Tick one box only.

[1 mark]

When
$$a < x < b$$
, $\frac{dy}{dx}$ is positive

and

when x > b, $\frac{dy}{dx}$ is positive

and

when x > b, $\frac{dy}{dx}$ is negative

When
$$a < x < b$$
, $\frac{dy}{dx}$ is negative

and

when x > b, $\frac{dy}{dx}$ is positive

and

when x > b, $\frac{dy}{dx}$ is negative

Turn over ▶

24	$a^2 < 4$	and	a + 2b = 8	
	Work out th Give your a	e range onswer as	of possible values of b . ${f s}$ an inequality. [4 mar	·ks]
		•••••		
		Aı	nswer	

25	Work out the values of x between 0° and 360° for which	
	$25\cos^2 x = 9$	
	Give your answers to 1 decimal place. [4	marks]
	A	
	Answer	

26	A cone has base radius \boldsymbol{r} cm and slant height \boldsymbol{l} cm

A hemisphere has radius $r\ \mathrm{cm}$

26 (a) The curved surface area of the cone equals the curved surface area of the hemisphere.

Show that l = 2r

[1	mark]

26 (b) The cone has vertical height h cm

The cone and hemisphere are joined to make the shape shown below.

Show that the volume of the shape can be written as

$a ext{cm}^3$ where a and b are integers. [4 marks]	;]
	•

Turn over ▶

27	Work out the values of a when
	$2^{a^2}=8^a\times 16$
	Do not use trial and improvement. You must show your working. [4 marks]
	Answer
	END OF QUESTIONS

Copyright $\ensuremath{\texttt{©}}$ 2015 AQA and its licensors. All rights reserved.

