

AQA Qualifications

Level 2 Certificate Further Mathematics

Paper 2 83602 Mark scheme

83602 June 2015

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

- **M** Method marks are awarded for a correct method which could lead to a correct answer.
- **M dep** A method mark dependent on a previous method mark being awarded.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- **B** Marks awarded independent of method.
- **B dep** A mark that can only be awarded if a previous independent mark has been awarded.
- **ft** Follow through marks. Marks awarded following a mistake in an earlier step.
- SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
- [a, b] Accept values between a and b inclusive.
- **3.14...** Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments		
	$d = 12$ or $r = 6$ or $r = \sqrt{36}$	M1	oe eg $r^2 = 36$		
	$x^2 + y^2 = 36$ or $x^2 + y^2 = 6^2$	A1	oe		
			SC1 $x^2 + y^2 = \text{their } r^2$		
	A	dditional (Guidance		
	M1 Must be clear that 12 is the diame	ter or that	6 or $\sqrt{36}$ is the radius		
	SC1 Must be clear that they are using	their r			
	eg1 $r = 12$ and $x^2 + y^2 = 144$				
	eg2 $x^2 + y^2 = 144$				
	eg3 $r = 6\pi$ and $x^2 + y^2 = (6\pi)^2$				
1	eg4 $r = 6\pi$ and $x^2 + y^2 = 6\pi^2$				
	$x^2 + y^2 = 12$ (d = 12 or r = 6 not seen)				
	$x^2 + y^2 = 6$ (r = 6 or d = 12 not seen)				
	$(x-0)^2 + (y-0)^2 = 36$ or $(x+0)^2 + (y+0)^2 = 6^2$				
	$(linear term)^2 + (linear term)^2 = 36 (or$	6 ²) implies	M1 A0		
	eg1 $a^2 + b^2 = 36$				
	eg2 $(x-6)^2 + y^2 = 6^2$				
	Ignore subsequent incorrect evaluation of 6^2 after $x^2 + y^2 = 6^2$ seen				
	$x^2 + y^2 = 6^2 \text{(in working)}$				
	$x^2 + y^2 = 12$ (on answer line)				

	2:1	B2	B1	Ratio equivalent to 2 : 1	
				or	
				1:2	
	SC1 Ratio seen that is control to simplest form				y converted
	Ad	dditional (Guidaı	псе	
Equivalent ratios may involve decimals or fractions eg 1.8:0.9				1.8 : 0.9	B1
	Equivalent ratios must be a pair of values or a pair of single term expressions in the same variable				
	eg1 36:18				B1
	eg2 6b: 3b				B1
	eg3 20 – 2:9				B0
	For B1 equivalent ratios to 2 : 1 can be	seen as fr	action	s eg <u>18</u>	B1

	Alternative method 1				
	5p10 or $5p + 10$ or $-10 - 5p$	M1	oe		
	or $5p = 20$ or $5p = -40$				
	4	A1			
	- 8	A1			
	Alternative method 2				
3	$\frac{-10+30}{5}$ or $\frac{-10-30}{5}$	M1	oe		
	4	A1			
	-8	A1			
	A				
	Alt 1 M1 may be seen within Pythagor				
	eg $(5p + 10)^2 + (2 - 2)^2 = 30$ [5p + 10 seen]			M1	
	Only one value correct is likely to score 2 marks				

$1-a+2a=1+a$ and $3(1+a)=3+3a$ B1 oe Allow $3(1-a+2a)=3+3a$ if no incorrest working seen Alternative method 2 $\frac{3+3a}{3}=1+a$ and $1+a-2a=1-a$ Additional Guidance Allow $1a$ for a throughout Alt 1 $a+2a=3a$ $3\times 1=3$ $3+3a$ (incorrect working seen) Alt 1 $-a+2a=a$ $3\times a=3a$ $3\times 1=3$ $3+3a$ B1 $3(1+a)=3+3a$ B0 Alt 1 $1-a+2a=1+a$ B0		Alternative method 1			
Alternative method 2 $ \frac{3+3a}{3} = 1 + a $ and $ 1 + a - 2a = 1 - a $ Additional Guidance Allow 1a for a throughout Alt 1 $ a + 2a = 3a $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{(incorrect working seen)} $ Alt 1 $ -a + 2a = a $ $ 3 \times a = 3a $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{B1} $ $ 3 \times 3a \text{B2} $ Alt 1 $ 6 \times 3a = 3a \text{B2} $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{B3} $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{B4} $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{B4} $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{B4} $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{B4} $ $ 3 \times 1 = 3 $ $ 3 \times 3a \text{B4} $ $ 3 \times 1 = 3 $ $ 3 \times 1 = 3 $		1 – <i>a</i> + 2 <i>a</i> = 1 + <i>a</i>	B1	oe	
Alternative method 2 $ \frac{3+3a}{3} = 1+a $ and $1+a-2a = 1-a$ B1 oe Additional Guidance Allow 1a for a throughout Alt 1 $a+2a=3a$ $3 \times 1 = 3$ $3 + 3a$ (incorrect working seen) Alt 1 $-a+2a=a$ $3 \times a=3a$ $3 \times 1 = 3$		and		Allow $3(1 - a + 2a) = 3 + 3a$ if	no incorrect
$\frac{3+3a}{3} = 1+a$ and $1+a-2a = 1-a$ Additional Guidance Allow 1a for a throughout Alt 1 $a+2a = 3a$ $3 \times 1 = 3$ $3+3a \qquad (incorrect working seen)$ Alt 1 $-a+2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$ $3+3a \qquad B1$ $3(1+a) = 3+3a \qquad B0$ Alt 1 $1-a+2a = 1+a$		3(1+a) = 3 + 3a		working seen	
Additional Guidance Allow 1a for a throughout Alt 1 $a + 2a = 3a$ $3 \times 1 = 3$ $3 + 3a$ (incorrect working seen) Alt 1 $-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$		Alternative method 2			
Additional Guidance Allow 1a for a throughout Alt 1 $a + 2a = 3a$ $3 \times 1 = 3$ $3 + 3a$ (incorrect working seen) Alt 1 $-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$		$\frac{3+3a}{3} = 1 + a$	B1	oe	
Additional Guidance Allow 1a for a throughout Alt 1 $a + 2a = 3a$ $3 \times 1 = 3$ $3 + 3a $		and			
Allow 1a for a throughout Alt 1 $a + 2a = 3a$ $3 \times 1 = 3$ $3 + 3a$ (incorrect working seen) Alt 1 $-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$		1 + a - 2a = 1 - a			
Alt 1 $a + 2a = 3a$ $3 \times 1 = 3$ $3 + 3a$ (incorrect working seen) Alt 1 $-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$		Ad	dditional G	Guidance	
$a + 2a = 3a$ $3 \times 1 = 3$ $3 + 3a $		Allow 1a for a throughout			
4(a) $3 \times 1 = 3$ $3 + 3a$ (incorrect working seen) Alt 1 $-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$ $3 + 3a$ B1 $3(1 + a) = 3 + 3a$ B1 Alt 1 $1 - a + 2a = 1 + a$		Alt 1			
4(a) $3 + 3a$ (incorrect working seen) Alt 1 $-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$ $3 + 3a$ B1 $3(1 + a) = 3 + 3a$ B1 Alt 1 $1 - a + 2a = 1 + a$		a + 2a = 3a			В0
Alt 1 $-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$ $3 + 3a$ $3(1 + a) = 3 + 3a$ B1 $1 - a + 2a = 1 + a$		3 × 1 = 3			
$-a + 2a = a$ $3 \times a = 3a$ $3 \times 1 = 3$ $3 + 3a$ B1 $3(1 + a) = 3 + 3a$ B0 Alt 1 $1 - a + 2a = 1 + a$	4(a)	3 + 3 <i>a</i> (incorrect working seen)			
$3 \times a = 3a$ $3 \times 1 = 3$ 3 + 3a 3(1 + a) = 3 + 3a B1 1 - a + 2a = 1 + a		Alt 1			
$3 \times 1 = 3$ $3 + 3a$ B1 $3(1 + a) = 3 + 3a$ B0 Alt 1 $1 - a + 2a = 1 + a$		-a + 2a = a			
3 + 3a $3(1 + a) = 3 + 3a$ B1 Alt 1 $1 - a + 2a = 1 + a$					
3(1 + a) = 3 + 3a B0 Alt 1 $1 - a + 2a = 1 + a$					
Alt 1 $1 - a + 2a = 1 + a$		3 + 3 <i>a</i>			
1-a+2a=1+a		3(1+a) = 3 + 3a			
		Alt 1			
$3 \times 1 + a = 3 + 3a$ (incorrect working seen)		1 - a + 2a = 1 + a			
		$3 \times 1 + a = 3 + 3a$ (incorrect working seen)			
Alt 1		Alt 1			
1 - a + 2a = 1 + a					
1 + a <u>×3</u>					
$\frac{3}{3+3a}$ B1		$\frac{3}{3+3a}$			B1
Must use algebra		Must use algebra			

	Alternative method 1				
	9 + 15a or $3(3 + 3a + 2a)$	(3 + 5 <i>a</i>) or	M1	oe	
	their (9 + 15a) =	= 16	M1	Must expand any brackets correctly	
	their $15a = 16 - $	their 9		their $(9 + 15a)$ must be at least	t two terms
	$\frac{7}{15}$ or 0.46 c	or 0.47	A1ft	ft from M1 M0 or M0 M1 with 1 error Allow 0.466 or 0.467	
				SC1 $\frac{13}{3}$ or 4.33 oe	
		Δ	dditional (Guidance	
	$\frac{7}{15}$ (may be seen in working) with subsequent attempt at evaluation			M1 M1 A1	
	3(3 + 5 <i>a</i>) = 16			M1	
4(b)	9 + 5a = 16 (error in expansion)			MO	
	5a = 7			A1ft	
	<i>a</i> = 1.4	z = 1.4 (1 error)			AIII
	3(3 + 5a) = 16				M1
		(error in expansion)			MO
		(error in collection)			
	$a = \frac{22}{15} $ (2 errors)				A0ft
	May just state a 3rd term but cannot use $3 + 3a$ for the 3rd term				
	9 + 8 <i>a</i> = 16				MO
	8a = 7 (no brackets to expand and collects term correctly)				M1
	$a = \frac{7}{8}$				A1ft
	For A1ft accept answers rounded to at least 2sf if not an integer				
	3(3 + 5 <i>a</i>) = 6 +	5a is two errors so not	possible to	award A1ft	
	1 – <i>a</i> = 16				M0 M0 A0

	Alternative method 2				
	3(3 + 5a) or 3	3(3 + 3a + 2a)	M1	oe	
	their (3 + 5a) =	16 their 3	M1	Must divide by their 3 correctly terms correctly	and collect
	and			their (3 + 5a) must be at least t	wo terms
	their $5a = \frac{16}{\text{their }3}$ – their 3				
	$\frac{7}{15}$ or 0.46 o	r 0.47	A1	ft from M1 M0 or M0 M1 with 1	error
	15	0.47		Allow 0.466 or 0.467	
				SC1 $\frac{13}{3}$ or 4.33 oe	
		A	dditional (Guidance	
	$\frac{7}{15}$ (may be seen in working) with subsequent attempt at evaluation			M1 M1 A1	
4(b)	3(3 + 5a) = 16			M1	
	$9 + 5a = \frac{16}{3}$ (error in division by 3)			M0	
	$5a = \frac{16}{3} - 9$				
	$a = -\frac{11}{15}$	(1 error)			A1ft
	3(3 + 5 <i>a</i>) = 16				M1
	$9 + 5a = \frac{16}{3}$ $5a = \frac{16}{3} + 9$	(error in division by 3)			MO
	$5a = \frac{16}{3} + 9$	(error in collection)			
	$a = \frac{43}{15}$	(2 errors)			A0ft
	For A1ft accept answers rounded to at least 2sf if not an integer				
	3(3 + 5a) = 6 + 5a is two errors so not possible to award A1ft				
			•		

	Draws $y = -2x + 5$ for x-values from -3 to 3	B4	В3	Draws line with gradient -2 intercept \neq (0, 1) or Draws $y = -2x + 5$ but too s	
			B2	Draws $y = -2x + 1$	
				or	
				states $y = -2x + 5$ oe	
				or	
				states gradient –2 and (y-) i	ntercept 5
				or identifies a point other than	(3 1) that
				lies on $y = -2x + 5$	(5, -1) that
			B1	States gradient –2	
				or	
				states $y = -2x + c$ $c \neq 1$	c≠5 oe
5			SC2	2 Draws $y = \frac{1}{2}x - \frac{5}{2}$	
			SC1	Draws $y = \frac{1}{2}x + c$ $c \neq -$	5 2
	Additional Guidance				
	Allow unruled lines if intention clear				
	Allow B4 if correct line is too long				
	Mark the better response between graph and working lines				
	2 lines drawn (no working seen)				
	eg1 $y = -2x + 5$ and $y = -2x + 1$				B4
	eg2 $y = -2x$ and $y = -2x + 1$				В3
	eg3 $y = -2x + 5$ and $y = -2x + 4$ (В3
	eg4 $y = -2x + 5$ and $y = x + 3$ (В0
	eg5 $y = -2x$ and $y = 2x$ (choice)			B0
	Apart from B4 response, allow lines that	at do not sp	oan <i>x-</i>	values from -3 to 3	
	gradient = $-2x$ (no further valid work)				В0

6	$5x^6$ or $(-)6x^5$ or $ax^6 - bx^5$ with $a > 0$ and $b > 0$	M1		
	$5x^6 - 6x^5$	A1		
	Additional Guidance			
	$\frac{5x^6 - 6x^5}{1}$			M1 A0
	$\frac{5x^6}{1}$ or $(-)\frac{6x^5}{1}$			M1 A0

	$6 \times \frac{2}{3}x^5$ or $4x^5$ or $-3 \times 8x^2$ or $-24x^2$	M1	ое		
	$4x^5 - 24x^2$	A1	Fully correct and simplified		
	-28	A1ft	ft M1 A0 and their gradient has at least to terms in <i>x</i>		
	Additional Guidance				
7	Second derivative used can score a magnetic eg1 $4x^5 - 24x^2$ and $20x^4 - 48x$ eg2 $4x^5 - 24x^2$ $20x^4 - 48x$	aximum Mʻ	1 A0 A0 unless recovered	M1 A0 A0	
	$4 \times (-1)^5 - 24 \times (-1)^2 = -20$			M1 A1 A0	
	$4x^5 - 24x$			M1 A0	
	20	A1ft			
	For A1ft accept answers rounded to at least 1dp if not an integer				
	Condone $y = -28$				

	$f(x) \ge 16$ or $y \ge 16$	B1	Condone absence of (x) or absence of brackets
8(a)	Additional Guidance		
O(a)	<i>x</i> ≥ 16		В0
	$f(x) > 16$ or $f(x) \le 16$ or $f(x) < 1$	6	В0
	16		В0

	$-1 \le g(x) \le 8$ or $-1 \le y \le 8$	B2	B1 $g(x) \le 8$ or $-1 \le g(x)$	c) or
			$y \le 8$ or $-1 \le y$	or
			-1 and 8 chosen	
			Condone absence of (x) or brackets for B2 or B1	absence of
	Ad	dditional G	Guidance	
	Both inequalities $g(x) \le 8$ and $-1 \le g(x)$	() given as	their answer	B2
	B1 may be seen with an incorrect inequ	uality		
8(b)	eg1 $5 \le g(x) \le 8$			B1
	eg2 $-1 \le g(x) \le 2$	B1		
	For B1 ignore incorrect notation if –1 a			
	eg1 $-1 \le x \le 8$	B1		
	eg2 -1 < g < 8	B1		
	eg3 -1 to 8	B1		
	eg4 –1 0 1 2 3 4 5 6 7	В0		
	$3 \le x \le 8$			В0
	Allow g to be f			

	5x - 3 < 1 or $-2 < 5x - 3$	M1	oe		
	or $-2 < 5x - 3 < 1$		eg $x < \frac{4}{5}$ or $\frac{1}{5} < x$ or 1	< 5 <i>x</i> < 4	
8(c)	$\frac{1}{5} < x < \frac{4}{5}$ or $0.2 < x < 0.8$	A1	oe $SC1 \frac{1}{5} < h(x) < \frac{4}{5} \text{(condone absence of } $ $(x) \text{ or absence of brackets)}$ $\text{or } \frac{1}{5} < y < \frac{4}{5}$ $\text{or } \frac{1}{5} \le x \le \frac{4}{5}$		
	Additional Guidance				
	Both inequalities $x < \frac{4}{5}$ and $\frac{1}{5} < x$ given	ven as thei	answer	M1 A1	
M1 Must use correct inequality symbol unless recovered in the A mark $5x - 3 \le 1$ or $5x - 3 > 1$ (answer not correct)				M0 A0	
	M1 If using equations award M0 unles	ed in the A mark			
	5x - 3 = 1 $5x - 3 = -20.2 < x < 0.8$				

	Alternative method 1				
	12 <i>y</i> – 18	B1			
	12 <i>y</i> – 2 <i>y</i> = 10 + 18	M1			
	Allow one sign or arithmetic en			ror	
			ft their expansion		
	2.8 or $\frac{14}{5}$	A1ft	oe fraction		
	5		Only ft an incorrect expansion		
	Ad	dditional G	Guidance		
	For A1ft accept answers rounded to at I	east 2sf if ı	not an integer		
	Omitting a term is not a sign or arithmetic error				
	12y - 18 = 2y			B1 M0	
9(a)	y = 1.8			A0ft	
	12y - 9 - 10 = 2y				
	10 <i>y</i> = 19				
	y = 1.9				
	12y - 3 - 10 = 2y				
	12y - 2y = 10 - 3 (one sign error)				
	y = 0.7			A0ft	
	8y - 18 - 10 = 2y			В0	
	8y - 38 = 2y (one arithmetic error)				
	y = 6.3 (M1 implied)	M1 A0ft			
	12y - 18 - 10 = 2y				
	14y = 28 (one sign error)				
	y = 2 (no ft as their expansion is co	orrect/cann	ot give full marks with an error)	A0ft	

	Alternative method 2				
	$2y - 3 - \frac{10}{6} = \frac{2y}{6}$	B1	oe		
	$2y - \frac{2y}{6} = 3 + \frac{10}{6}$	M1	Collects terms Must have at least one of $\frac{10}{6}$ Allow one sign or arithmetic entitle their division by 6	O .	
	2.8 or $\frac{14}{5}$	A1ft	oe fraction Only ft an incorrect division by	, 6	
	А	Guidance			
	For A1ft accept answers rounded to at least 2sf if not an integer				
9(a)	(a) $2y - 3 - 10 = \frac{2y}{6}$ (error in division by 6)			В0	
	$2y - \frac{2y}{6} = 3 + 10$	M1			
	7.8			A1ft	
	$2y - 3 - 10 = \frac{2y}{6}$ (error in division by	y 6)		В0	
	$2y + \frac{2y}{6} = 3 + 10$ (one sign error)	M1			
	39 (only ft an incorred	A0ft			
	$2y - 3 - \frac{10}{6} = \frac{2y}{6}$			B1	
	$2y - \frac{2y}{6} = 3 - \frac{10}{6}$ (one sign error)			M1	
	0.8 (no ft as their division by 6 is con	rect/canno	t give full marks with an error)	A0ft	

	$\sqrt{w+4} = 6 \times 2$	M1	oe			
	$w + 4 = (6 \times 2)^2$	M1dep	oe			
	140	A1	SC1 68			
	Alternative method 2					
	$\frac{w+4}{2^2}=6^2$	M1	oe			
9(b)	$w + 4 = 6^2 \times 2^2$	M1dep	oe			
	140	A1	SC1 68			
		Additional Guidance				
	Embedded correct answer	M1 M1 A0				
	Alt 1 $\sqrt{w+4} = 12$ followed by $w+4$ Second part is their next step so not a	M1 M0				
	Alt 1 $\frac{\sqrt{w+4}}{2}$ × ² = 6 × ² does not score M1 unless correctly processed					
	1 1	N44				
	$m^{\frac{1}{5}} = \frac{0-9}{3}$ or $m^{\frac{1}{5}} = -3$	M1				
	or $\sqrt[5]{-3}$ or $(-3)^5$ or 243					
	-243	A1				
9(c)	Additional Guidance					
	Condone -3^5 for $(-3)^5$					
	Allow $\sqrt[5]{m}$ for $m^{\frac{1}{5}}$					

 $m^{\frac{1}{5}} + 3 = 0$ or $3m^{\frac{1}{5}} = -9$ or $(3m^{\frac{1}{5}})^5 = (-9)^5$

 $3^5 m = (-9)^5$ or 243m = -59049

Alternative method 1

M0

M1

	Alternative method 1		
	(grad CP =) $\frac{8-6}{2-3}$ or -2	M1	oe
	(grad PT =) $\frac{\pm 1}{\text{their - 2}}$ or $\pm \frac{1}{2}$	M1	oe
	$\frac{t-8}{-4-2} = \text{their grad PT}$	M1dep	oe dep on 2nd M1
	5	A1	
	Alternative method 2		
	(grad CP =) $\frac{8-6}{2-3}$ or -2	M1	oe
10	(grad PT =) $\frac{\pm 1}{\text{their - 2}}$ or $\pm \frac{1}{2}$	M1	oe
	y = (their grad PT) $x + c$	M1dep	oe
	and		dep on 2nd M1
	substitutes (2, 8) to find c		
	and substitutes $x = -4$ into their equation		
	or		
	y - 8 = their grad $PT(x - 2)$		
	and		
	substitutes $x = -4$ into their equation		
	5	A1	
	Ad	dditional G	Guidance
	Answer of 5 gains full marks (could be	a restart)	

	Alternative method 3			
	$(8-6)^2 + (2-3)^2$	M1	oe	
	or		$CP = \sqrt{5}$ may be seen on the diagram	
	$(t-8)^2 + (-4-2)^2$			
	or			
	$(t-6)^2 + (-4-3)^2$			
	their CP^2 + their PT^2 = their CT^2	M1dep	oe	
	with at least two of CP ² , PT ² and CT ² correct		their PT ² and their CT ² must both be in terms of <i>t</i>	
10	$(8-6)^2 + (2-3)^2 +$	M1	oe eg $20 = 4t$	
	$(t-8)^2 + (-4-2)^2 =$		Must be fully correct method	
	$(t-6)^2 + (-4-3)^2$			
	or			
	$t^{2} - 8t - 8t + 64 + 36 + 4 + 1$ $= t^{2} - 6t - 6t + 36 + 49$			
	$= t^2 - 6t - 6t + 36 + 49$			
	5	A1		
	Additional Guidance			
	Answer of 5 gains full marks (could be	a restart)		

	$3w^2 + 2wy - 12wy - 8y^2$	M1	oe 4 terms with 3 correct Terms may be seen in a grid May be implied eg1 $3w^2 - 10wy + 8y^2$ eg2 $w^2 - 10wy - 8y^2$	
	$3w^2 + 2wy - 12wy - 8y^2$	A1	Fully correct Do not allow if only seen in a grid	
	$3w^2 - 10wy - 8y^2$	A1ft	ft M1 A0	
	Ad			
	Accept yw for wy throughout			
11(a)	A correct term must include a - sign if			
	$3w^2 + 2wy - 12wy - 8y$ $3w^2 - 10wy - 8y$	M1 A0 A1ft		
	$3w^{2} + 2wy + 12wy - 8y^{2}$ $3w^{2} + 14wy - 8y \qquad \text{(does not ft from previous line)}$		e)	M1 A0 A0ft
	$3w - 10wy - 8y^2$ (implied M1 and A1ft as terms collected)			
	$3w^2 + 2wy - 12wy - 8wy$ $3w^2 - 18wy$	M1 A0 A1ft		
	$3w^2 + 10wy - 8y^2$	M0 A0 A0ft		
	Penalise the 2nd A1 if further work seen $3w^2 - 10wy - 8y^2 = 3w^2 - 18wy^2$			M1 A1 A0ft

	$\frac{3x}{3x^2}$ or $\frac{9x^2}{x^2}$ or $(-)\frac{3}{x^2}$	M1	oe eg1 $\frac{3 \times x}{x^2 \times 3}$ eg2 9
			One correct product, unsimplified or simplified
	$\frac{3x}{3x^2} + \frac{9x^2}{x^2} - \frac{3}{x^2} \text{or}$ $\frac{1}{x} + \frac{9x^2}{x^2} - 3x^{-2} \text{or}$ $\frac{3x + 27x^2}{3x^2} - \frac{3}{x^2} \text{or}$ $\frac{x}{x^2} + \frac{9x^2 - 3}{x^2} \text{or}$ $\frac{9x^2}{x^2} + \frac{3(x - 3)}{3x^2} \text{or}$	A1	oe Fully correct expansion of given expression that requires further simplification Multiplication signs not allowed unless recovered eg $\frac{3 \times x}{x^2 \times 3} + \frac{9x^2}{x^2} - \frac{3}{x^2}$ M1 A0
11(b)	$\frac{3x + 27x^2 - 9}{3x^2}$		
	$\frac{1}{x} + 9 - \frac{3}{x^2} \qquad \text{or}$ $x^{-1} + 9 - 3x^{-2} \qquad \text{or}$ $\frac{1}{x} + \frac{9x^2 - 3}{x^2} \qquad \text{or}$ $x^{-1} + \frac{9x^2 - 3}{x^2} \qquad \text{or}$ $\frac{x - 3}{x^2} + 9 \qquad \text{or}$ $\frac{1 + 9x}{x} - \frac{3}{x^2} \qquad \text{or}$ $\frac{x + 9x^2 - 3}{x^2}$	A1	oe Any of these answers implies M1 A1 A1 Do not allow $\frac{9}{1}$ for 9 Multiplication signs or brackets that require expansion not allowed unless recovered After M1 A1 A1 penalise further work eg $\frac{x+9x^2-3}{x^2}$ followed by $\frac{3x+27x^2-9}{3x^2}$ M1 A1 A0
		dditional 0	Suidance
	3 mark responses with fractions must h		

	$\frac{1}{2}$ (×) x (×) y (×) $\sin 30 = x^2$	M1	oe equation		
	y = 4x	A1	oe Any unsimplified form but must h the subject	ave y as	
	A	dditional (Guidance		
12	12 $\frac{1}{2}(x) x(x) y(x) \frac{1}{2} = x^2$				
	Unsimplified forms may involve fractions and/or sin 30 not evaluated				
	$eg \frac{4x^2}{x} = y$			M1 A1	
	If a 2 mark response is seen in the working lines, ignore any subsequent attempt to simplify unless the attempt produces an answer that does not have y as the subjection.				
	eg1 $y = \frac{4x^2}{x}$ in working and $x = \frac{4}{y}$ on answer line				

	Alternative method 1			
	OP = 3 or P (3, 0)	M1	May be seen on diagram	
	and		May be implied eg $5^2 - 3^2$	
	PQ = 5 or radius = 5			
	$(OQ =) \sqrt{\text{their } PQ^2 - \text{their } OP^2}$ or	M1		
	$\sqrt{5^2 - 3^2}$ or 4			
	or Q (0, 4)		May be seen on diagram	
	(gradient =) - their OQ or their OP	M1	oe	
			Gradient must be negative	
13	$\frac{0 - \text{their } 4}{\text{their } 3 - 0} \text{or } -\frac{4}{3}$		Allow –1.33	
13	4x + 3y - 12 = 0	A1	4x + 3y - 12 or $-4x - 3y + 12$ imply M3 A0	
	or Any correct equation not in required implies M3 A0		quired form	
			eg $y = -\frac{4}{3}x + 4$ or $4x + 3y$	· = 12
			or $\frac{4}{3}x + y - 4 = 0$	
	A	dditional (Guidance	
	3y + 4x - 12 = 0 etc			M3 A1
	8x + 6y - 24 = 0 etc			M3 A1
	OQ = 4 (implied by 4 next to Q on dia	M1 M1		
	3rd M1 Gradient may be seen within w	an equation		
	3rd M1 Condone inclusion of x			

	Alternative method 2			
	$(0-3)^2 + y^2 = 25$	M1	oe	
	$(OQ =) \sqrt{25 - \text{their} (0 - 3)^2} \text{ or } 4$	M1		
	or Q (0, 4)		May be seen on diagram	
13	(gradient =) $-\frac{\text{their OQ}}{3}$ or $\frac{0 - \text{their 4}}{3 - 0}$ or $-\frac{4}{3}$	M1	oe Gradient must be negative Allow -1.33	
	4x + 3y - 12 = 0	A1	4x + 3y - 12 or $-4x - 3y + 12$ imply M3 A0	
	or $-4x - 3y + 12 = 0$		Any correct equation not in required form implies M3 A0	
			eg $y = -\frac{4}{3}x + 4$ or $4x + 3y = 12$	
			or $\frac{4}{3}x + y - 4 = 0$	
	Additional Guidance			
	3y + 4x - 12 = 0 etc		M3 A1	
	8x + 6y - 24 = 0 etc	M3 A1		
	OQ = 4 (implied by 4 next to Q on diagram)			
	3rd M1 Gradient may be seen within working for an equation			
	3rd M1 Condone inclusion of x			

	Alternative metho	od 1			
	$3 \times \frac{3}{2}$	$3 \times \frac{5}{2}$	M1	$3 \div \frac{2}{3}$ is equivalent to $3 \times \frac{3}{2}$	
	$6 + \frac{3}{2} \times 3 = 10.5$	$3 + \frac{5}{2} \times 3 = 10.5$	A1	$3 \div \frac{2}{5}$ is equivalent to $3 \times \frac{5}{2}$	
	or			$5 \times \frac{3}{2}$ is equivalent to $3 \times \frac{5}{2}$	
14(a)	$3 + 3 + \frac{3}{2} \times 3$				
	= 10.5				
		A	dditional (Guidance	
	M1 Do not allow 4	.5 or 7.5 unless corr	ect method	d or scale factor also seen	
	$6 + 3 + \frac{3}{2}$				МО

	Alternative metho	od 2			
	$10.5 - 6 = 4.5$ and $4.5 \div \frac{3}{2} = 3$	10.5 - 3 = 7.5 and $7.5 \div \frac{5}{2} = 3$	B2	May be seen in one step $4.5 \times \frac{2}{3} = 3 \text{ is equivalent to } 4.5 \div \frac{3}{2} = 3$	
	2	2		$7.5 \times \frac{2}{5} = 3$ is equivalent to $7.5 \div \frac{5}{2} = 3$	
14(a)	Additional Guidance				
	Do not allow 4.5 and 3 unless correct method also seen				
	Do not allow 7.5 and 3 unless correct method also seen				
	B1 not possible for this method which is verification by working back to the <i>x</i> -coordinate of <i>P</i>				
	Allow further additi	on of 3 (to obtain x-c	coordinate	of Q)	
1	L				

	Alternative method 3				
14(a)	$\frac{10.5 - 6}{3} = 1.5$ and $\frac{6 - 3}{2} = 1.5$	$\frac{10.5 - 3}{5} = 1.5$ and $\frac{6 - 3}{2} = 1.5$	B2	oe eg $\frac{10.5 - 6}{3} = 1.5$ and $\frac{10.5 - 3}{5} = 1.5$	
		A	dditional C	Buidance	
	Do not allow 1.5 unless two correct methods also seen				
	B1 not possible for	this method which i	s verificatio	on by working to 1.5 in two ways	

14(a)	Alternative method 4				
	$10.5 - 6 = 4.5$ and $\frac{6 - 3}{2} \times 3 = 4.5$	B2			
	Additional Guidance				
	Do not allow 4.5 unless two correct methods also seen				
	B1 not possible for this method which is verification by working to 4.5 in two ways				

14(a)	Alternative method 5				
	10.5 – 3 = 7.5	B2			
	and				
	$\frac{6-3}{2} \times 5 = 7.5$				
	Additional Guidance				
	Do not allow 7.5 unless two correct methods also seen				
	B1 not possible for this method which is	s verification	on by working to 7.5 in two ways		

	Alternative method 6		
	Correct algebra using ratio 2 : 3	M1	oe
	eg1 $\frac{a-3}{6-3} = \frac{5}{2}$		
	eg2 $\frac{a-6}{6-3} = \frac{3}{2}$		
	eg3 $\frac{a-3}{a-6} = \frac{5}{3}$		
	$eg4 \frac{3 \times 3 + 2 \times a}{5} = 6$		
	Correct working leading to 10.5	A1	Must see method for M1
14(2)	eg1 $a - 3 = 7.5$ and $a = 10.5$		
14(a)	eg2 $a - 6 = 4.5$ and $a = 10.5$		
	eg3 $3(a-3) = 5(a-6)$ and $a = 10.5$		
	eg4 9 + 2 a = 30 and a = 10.5		
	A	dditional (Guidance
	Equivalents for M1 include		
	(eg1) $2a - 6 = 15$	$eg2) \frac{6-3}{a-6}$	$\frac{3}{5} = \frac{2}{3}$
	(eg3) $3(a-3) = 5(a-6)$	eg4) $\frac{9+2}{5}$	$\frac{2a}{}=6$
	For A1 there must be at least one correworking)	ect working	step seen (and no incorrect

	Alternative metho	od 1			
	$\frac{8b}{2} \times 3$ or	$\frac{8b}{2} \times 5$ or $20b$	M1	oe	
	12 <i>b</i>				
	$9b + \frac{8b}{2} \times 3 = 7$	$b + \frac{8b}{2} \times 5 = 7$	M1dep	oe	
14(b)	or 21 <i>b</i> = 7	or 21 <i>b</i> = 7			
	$\frac{1}{3}$		A1	Allow 0.33	
	3				
		A	dditional G	Guidance	
	2nd M1 implies the 1st M1				
	If $\frac{1}{3}$ is clearly from incorrect method seen, do not award marks				

	Alternative method 2		
	Correct algebra using ratio 2 : 3	M1	oe
	eg1 $\frac{7-b}{9b-b} = \frac{5}{2}$		
	eg2 $\frac{7-9b}{9b-b} = \frac{3}{2}$		
	eg3 $\frac{9b-b}{6-3} = \frac{7-b}{10.5-3}$		
	eg4 $\frac{7-9b}{10.5-6} = \frac{7-b}{10.5-3}$		
	eg5 $\frac{7-9b}{10.5-6} = \frac{9b-b}{3}$		
	eg6 $\frac{7-b}{7-9b} = \frac{5}{3}$		
	$eg7 \frac{3 \times b + 2 \times 7}{5} = 9b$		
14(b)	Further correct simplification	M1dep	oe
	eg cross multiplication or expanding brackets		
	eg1 $2(7-b) = 5(9b-b)$		
	eg2 $14 - 18b = 24b$		
	eg3 $60b = 21 - 3b$		
	eg4 $52.5 - 67.5b = 31.5 - 4.5b$		
	eg5 $21 - 27b = 36b$		
	eg6 $21 - 3b = 35 - 45b$		
	eg7 $3b + 14 = 45b$		
	1	A1	Allow 0.33
	3		
	Ad	dditional G	Guidance
	2nd M1 implies the 1st M1		
	If $\frac{1}{3}$ is clearly from incorrect method se	en, do not	award marks

	Alternative method 1				
	$8(c^2+2)$ or $3(c^2+2)$	M1			
	$\frac{8(c^2+2)}{3(c^2+2)}$	A1			
	$\frac{8}{3} + \frac{1}{3} = 3$	A1			
	Alternative method 2				
	Converts to a valid common denominator with at least one numerator correct $eg1 \frac{3(8c^2 + 16)}{3(3c^2 + 6)} + \frac{3c^2 + 6}{3(3c^2 + 6)}$	M1	oe Other valid common denominators include $9c^2 + 18$ and $3(c^2 + 2)$		
15	eg2 $\frac{8c^2 + 16 + c^2 + 2}{3c^2 + 6}$				
	Makes into a single fraction with terms collected	A1	oe		
	eg1 $\frac{27c^2 + 54}{3(3c^2 + 6)}$				
	eg2 $\frac{9c^2 + 18}{3c^2 + 6}$				
	Shows that fraction simplifies to 3	A1	oe		
	eg1 $\frac{9(3c^2+6)}{3(3c^2+6)} = 3$		Must see a correct common quadratic factor and = 3		
	eg2 $\frac{3(3c^2+6)}{3c^2+6}$ = 3				
	eg3 $\frac{9(c^2+2)}{3(c^2+2)}$ = 3				
	A	dditional C	Guidance		
	Answer of 3 does not gain marks without	out correct	working for M1 A1 (1st) seen		
	Do not allow $\frac{3}{1}$ unless subsequently becomes 3				

Alternative method 1

$2x - 1) = 9$ $2^{2} - x - 9 (= 0)$ $-1 \pm \sqrt{(-1)^{2} - 4 \times 2 \times -9}$ 2×2	M1 A1 M1	oe oe equation with brackets expa Allow one error ft their 3-term quadratic	nded	
` , , , ,		Allow one error	nded	
$\frac{-1\pm\sqrt{(-1)^2-4\times2\times-9}}{2\times2}$	M1			
		Allow ± to be + or – in formula (as an error)	do not count	
$\frac{-1 \pm \sqrt{(-1)^2 - 4 \times 2 \times -9}}{2 \times 2} \text{or} \frac{-\sqrt{73}}{4}$	A1ft	quadratic Only ft their 3-term quadratic		
39	A1			
Additional Guidance				
$x \times 2x - 1 = 9$ is M0 unless recovered (eg followed by correct equation)				
d and 4th marks heir 3-term quadratic factorises allow 1 A0 not possible) 1 $x^2 - x - 6$ $(x + 2)(x - 3)$ 3 2 $x^2 - x - 6$ $(x - 2)(x - 3)$ 3	/ both mark	s if they factorise correctly	M0 A0 M1 A1ft A0 M0 A0 M0 A0ft A0	
Answer 2.39 with no equation seen			Zero	
d mark Substituting incorrect value fo	or b twice is	s 2 errors		
3rd mark Missing brackets is not an error if recovered				
3rd mark Omitting \pm or $\sqrt{}$ or division line is always 2nd M0				
3 2 3 3	$\sqrt{73}$ 4 9 According to the second of	Additional G 2x - 1 = 9 is M0 unless recovered (eg follows) and 4th marks heir 3-term quadratic factorises allow both mark 1 A0 not possible) 1 $x^2 - x - 6$ (x + 2)(x - 3) 3 2 $x^2 - x - 6$ (x - 2)(x - 3) 3 swer 2.39 with no equation seen	Fully correct substitution for the quadratic $\sqrt{73}$ $\sqrt{4}$ Only ft their 3-term quadratic Allow \pm to be \pm or \pm in formula (\pm as an error) At A0 if negative solution also in an SC5 1st M1 seen and answer 2 SC4 1st M1 seen and answer 2.38(6) or 2.4 Additional Guidance $2x - 1 = 9$ is M0 unless recovered (eg followed by correct equation) and 4th marks eieri 3-term quadratic factorises allow both marks if they factorise correctly 1 A0 not possible) 1	

	Alternative method 2			
	x(2x-1) = 9	M1		
	$2x^2 - x - 9 (= 0)$	A1	oe equation with brackets expa	anded
	$2[(x-\frac{1}{4})^2 \dots]$	M1	Attempt to complete the square 3-term quadratic ft their 3-term quadratic	e for their
	$2[(x-\frac{1}{4})^2 - (\frac{1}{4})^2 - \frac{9}{2}] = 0$	A1ft	oe $eg \ 2[(x - \frac{1}{4})^2 - \frac{73}{16}] = 0$ Fully correct equation for their	3-term
	2.39	A1	quadratic A0 if negative solution also in answer SC5 1st M1 seen and answer 2.39 SC4 1st M1 seen and	
16	Additional Guidance			
	$x \times 2x - 1 = 9$ is M0 unless recovered (eg followed by correct equation) 3rd and 4th marks They may divide (eg by 2) before attempting to complete the square			
	3rd and 4th marks			
	If their 3-term quadratic factorises allow both marks if they factorise correctly (M1 A0 not possible)			
	eg1 $x^2 - x - 6$	M0 A0		
	(x + 2)(x - 3)		M1 A1ft A0	
	3			M0 A0
	eg2 $x^2 - x - 6$			M0 A0ft
	(x-2)(x-3)			A0
	Answer 2.39 with no equation seen			Zero

	Alternative method 1	Alternative method 1				
	$(DB^2 =) 34^2 - 16^2$ or 900 or $(DB =) 30$	M1	M2 (DB ² =) $34^2 - 16^2 - 18^2$			
	their DB ² – 18 ² or 576	M1				
	24	A1				
	Alternative method 2					
17(a)	$(DB =) 34 \times \cos(\sin^{-1}\frac{16}{34}) \text{or} 34 \times \sin(\cos^{-1}\frac{16}{34}) \text{or} 30 \text{or} \frac{16}{\tan(\sin^{-1}\frac{16}{34})} \text{or} 30$ $\frac{16 \times \tan(\cos^{-1}\frac{16}{34})}{16 \times \tan(\cos^{-1}\frac{16}{34})} \text{or} 30$ $\frac{18}{\tan(\sin^{-1}\frac{18}{30})} \text{or} \frac{18}{\tan(\sin^{-1}\frac{18}{30})} \text{or} \frac{18}{\tan(\sin^{-1}\frac{18}{30})}$ $18 \times \tan(\cos^{-1}\frac{18}{\tan(\sin^{-1}\frac{18}{30})})$	M1	Allow 34 × cos [28, 28.1] or 34 × sin [61.9, 62] or 16 tan[28, 28.1] or 16 tan [61.9, 62] Allow their DB × cos [36.8, 36.9] their DB × sin 53.1 or 18 tan[36.8, 36.9] or 18 tan 53.1)] or		
	24	A1				
	Additional Guidance					
	Alt 1 576					
	Note that $\sqrt{16^2 + 18^2} = 24.08$ so do not award marks for 24 from this method					
	Allow if they use correct Pythagoras for one M mark and correct trigonometry for the other M mark					
	Marks may be gained from using correct cosine rule (up to AB ² =) or correct sine rule (up to AB =)					

	Alternative method 1				
	$\sin x = \frac{16}{34}$	M1	oe eg $\sin^{-1} \frac{16}{34}$ or $90 - \cos^{-1} \frac{16}{34}$		
	[28, 28.0725] or 28.1	A1			
	Alternative method 2				
17(b)	$\cos x = \frac{\text{their DB}}{34} \text{or}$ $\cos x = \frac{\sqrt{34^2 - 16^2}}{34}$ or $\tan x = \frac{16}{\text{their DB}} \text{or}$ $\tan x = \frac{16}{\sqrt{34^2 - 16^2}}$	M1	oe eg $\cos^{-1} \frac{\sqrt{34^2 - 16^2}}{34}$ or $90 - \sin^{-1} \frac{\sqrt{34^2 - 16^2}}{34}$ Look back to (a) for their DB		
	[28, 28.0725] or 28.1	A1ft	Only ft their DB		
	Additional Guidance				
	x may be any letter				
	Condone $\sin = \frac{16}{34}$ etc				
	Only Alt 2 has A1ft (ft answers must be rounded to at least 1dp if not an integer)				
	Marks may be gained from using correct cosine rule or correct sine rule (Must have cos <i>x</i> or sin <i>x</i> as the subject)				

	(1 (or <i>a</i>) is) Midway between 0 and 2 or $\frac{2+0}{2} = 1$ or $\frac{2-0}{2} = 1$	B1	oe	
	Minimum point (at $x = 1$ (or $x = a$)) or Symmetrical (about $x = 1$ (or $x = a$))	B1	oe	
10()	Additional Guidance			
18(a)	For minimum allow stationary or turning or lowest or vertex			
	Line of symmetry			B1
	Do not award B2 if an error seen eg $\frac{2-0}{2}$ = 2 is an error			
	Substitution of points in given equation does not score but ignore if other valid reason(s) seen			
	Ignore other non-contradictory reasons			

	$10 = 4 (0 - 1)^2 + b$	M1	oe eg $10 = 4 + b$		
	or $10 = 4 (2 - 1)^2 + b$				
	6	A1			
	Additional Guidance				
18(b)	If expansion before substitution, expansion must be fully correct				
	eg1 $4(x^2-x-x+1)+b$				
	$4(2^2 - 2 - 2 + 1) + b = 10$				
	eg2 $4x^2 - 2x + 1 + b$				
	16 – 4 + 1 + <i>b</i> = 10				
	a must not be present for M1 or A1				

18(c)	$4(x^2 - x - x + 1) + b$ or $4(x^2 - x - x + 1) + $ their 6	M1	oe correct expansion eg $4x^2 - 8x + 10$ Value for b does not have to be used		
	$y = 4x^2 - 8x + 10$	A1ft	Must have $y =$ Only ft their value for b		
	Additional Guidance				
	A1ft is $y = 4x^2 - 8x + 4$ + their value for b				
	a must not be present for M1 or A1				
	$y = 4x^2 - 8x + 10$ seen in working with $4x^2 - 8x + 10$ on answer line			M1 A1	

	Alternative method 1				
19	$3^3 - 10 \times 3 - 3$ or	M1	oe		
	27 – 30 – 3		Shows correct substitution (ignore any evaluation)		
	Statement why this means it is not a factor eg1 —6 which is not zero eg2 ≠ 0 eg3 Remainder is –6	A1	oe Must see correct working for M1		
	Additional Guidance				
	Evaluation of f(3) is not needed but if s	t = -6 for A1			
	27 – 30 – 3 ≠ 0	M1 A1			
	$3^{3} - 30 - 3 = -6 \neq 0$ $3^{3} - 30 - 3 = 6 \neq 0$	M1 A1 M1 A0			
	$27 - 30 - 3 = 0$ (condone as next $-6 \neq 0$	rms their working) M1 A1			
	$3^3 - 30 - 3 = -6$	M1 A0			
	-6 ≠ 0 which means 3 is not a factor	M0 A0			
	$3^2 - 30 - 3$	M0 A0			

	Alternative method 2		
	Attempt at division of $x^3 - 10x - 3$ by $(x - 3)$ correct up to $x^2 + 3x$	M1	
19	Division correct ie $x^2 + 3x - 1$ with remainder -6 seen and statement why this means it is not a factor eg there is a remainder	A1	
	Additional Guidance		
	For A1, –6 must be seen within the wor	king or in	the statement

	Rotation and 270 (anti-clockwise) and centre ${\cal O}$ or Rotation and 90 clockwise and centre ${\cal O}$	B2	oe B1 270 (anti-clockwise) or 90 Do not allow if reflection or transenlargement also stated	
	Ad	dditional G	Guidance	
	270 is anti-clockwise by default so 'anti	-clockwise	not required for B2 or B1	
	270			B1
	270 clockwise			В0
20(a)	Response that is not a single transformation is always B0			
	eg Rotation, 270 (anti-clockwise), centre O Scale factor 3 (enlargement)			В0
	Reflection 270 (anti-clockwise)			
	Rotation and 270 clockwise and centre O			B0
	Turn 90 clockwise centre O (B1 for 90 clockwise)			B1
	Do not allow a circular arrow for clockwise direction			
	eg 90 with circular arrow indicating clockwise			B0
	Do not allow quarter turn etc			
	eg Quarter turn clockwise			B0

	Rotation and 180 and centre <i>O</i> or Enlargement and scale factor –1 and centre <i>O</i>	B2	or –1 or		
	A	dditional (Guidance		
	Response that is not a single transform possible B2 answers	ation is alv	ways B0 unless they give the two		
	Rotation through 180 clockwise about	9		B2	
	Rotation through 180 anti-clockwise about O				
20(b)	For B2 or B1 ignore a circular arrow as direction not required				
	Do not allow half turn or turn				
	eg1 Half turn				
	eg2 Turn 180				
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ from multiplying given matrices in either order				
	Allow matrix to have brackets missing a	and/or com	mas but must be 2 by 2 array		
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ scores B1 even if description of transformation is incorrect				
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ seen followed by multiplication of matrix by a vector is not a choice				

21	24 or 6 or 1026 or 36 or -4 - 2 or -6 or -26 - 10 or -36	M1	May be seen on diagram	
	$\frac{1}{2} \times (24) \times (1026) \text{or}$ $\frac{1}{2} \times 6 \times 36 \text{or}$ -108 108	M1 A1	oe eg $\frac{1}{2}$ × 6 × 36 × sin 90 Allow (2 – –4) to be (–4 – 2) Allow (10 – –26) to be (–26 – 1) SC2 Answer 108 but clearly us normal at A and tangent a	sed
	Additional Guidance			
	2nd M1 implies the 1st M1			
	-108 is M1 M1 A0 unless recovered			
	Diagram showing triangle with vertices in 2nd, 3rd and 4th quadrants and answer 108			SC2
	Diagram showing rectangle or 2 triangle	es and ans	wer 108	M1 M1 A1

	Alternative method 1				
	Second differences -4	M1	Implied by $-2n^2$		
	Subtracts $\frac{\text{their} - 4}{2} n^2$ from given sequence	M1	At least 3 correct values impli method	es correct	
	or 304 608 912		(next term is 1216)		
	$-2n^2 + 304n$	A1	oe eg $n(304 - 2n)$		
			Allow any letter		
	Alternative method 2				
	Any 3 of	M1	Using $an^2 + bn + c$		
	a + b + c = 302				
	4a + 2b + c = 600				
22(a)	9a + 3b + c = 894 16a + 4b + c = 1184				
		N44			
	Correctly eliminates the same letter using two different pairs of equations	M1			
	eg				
	3a + b = 600 - 302 and				
	5a + b = 894 - 600				
	$-2n^2 + 304n$	A1	oe eg $n(304 - 2n)$		
			Allow any letter		
			Allow $a = -2$ $b = 304$ $c = 0$) if	
	$an^2 + bn + c \text{ seen earlier}$ Additional Guidance				
			Guidance		
	Condone mixed letters and/or inclusion eg1 $-2n^2 + 304x$	of = 0		M1 M1 A1	
	$eg2 -2n^2 + 304n = 0$			M1 M1 A1	
	Alt 1				
	2nd differences = 4			MO	
	300 592 876 1152			M1 A0	

	Alternative method 3			
	a = -2	M1	Using $an^2 + bn + c$	
	3a + b = 600 - 302	M1	oe eg $b = 304$	
	and substitutes their a		May also see $a + b + c = 302$ obtain c	sused to
	$-2n^2 + 304n$	A1	oe eg $n(304 - 2n)$	
			Allow any letter	
	Alternative method 4			
22(a)	Second differences -4	M1		
	302 + (600 – 302)(n –1) +	M1	Using $a + d(n-1) + 0.5c(n-1)$	1)(<i>n</i> –2)
	$0.5 \times \text{their} -4(n-1)(n-2)$		a is 1st term	
			d is 2nd term – 1st term	
			c is second differences	
	$-2n^2 + 304n$	A1	oe eg $n(304 - 2n)$	
			Allow any letter	
	Additional Guidance			
	Condone mixed letters and/or inclusion of = 0 eg1 $-2n^2 + 304x$			M1 M1 A1
	$eg2 -2n^2 + 304n = 0$			M1 M1 A1

	n(-2n + 304) or $2n(-n + 152)$	M1	oe		
	or $2n = 304$		Factorises correctly to two line	ear factors	
			or		
			substitutes correctly in quadratic formula		
			or		
			correctly completes the squar equation	e to a correct	
			or		
			simplifies to $an = b$		
			ft their quadratic		
22(b)	152	A1			
(.,,	Additional Guidance				
	152 and 0			M1 A0	
	M1 Factorising may be seen after divis				
	eg if (a) correct $n(-n + 152)$			M1	
	Their quadratic must have at least two terms for M1				
	Only ft for M1 A0				
	If their quadratic in (a) is incorrect, che to at least 1dp) if method not shown				
	Do not award M1 if their quadratic from	n (a) has so	plution $n = 0$		
00	Atta become directed our contribution	D4			
23	4th box indicated unambiguously	B1			

	Alternative method 1				
	(a+2)(a-2) or 2 and -2 identified	M1	2 and –2 may be seen on a grainequalities	aph or within	
	8-2b < 2 or b > 3 $-2 < 8-2b or b < 5$	M1 M1	oe Allow any inequality symbol Allow inequality symbol to be = M3 -2 < 8 - 2b < 2		
	3 < b < 5	A1	SC3 2 < b < 6 or -4 < b <	12	
	Additional Guidance				
24	Both inequalities $b < 5$ and $3 < b$ given as their answer			M3 A1	
	a < 2 $8 - 2b = 2$ $b = 3$			M0 M1 M0 A0	
	Must use 2 in 2nd M1				
	Must use –2 in 3rd M1				
	3 or 5 identified implies M1				
	3 and 5 identified			M1 M1 M1	
	Working with = throughout can gain a maximum of M1 M1 M1 A0 unless recovered				
	Condone use of any letter other than a				

	Alternative method 2				
	$(8-2b)^2 < 4$	M1	Allow any inequality symbol Allow inequality symbol to be = Must see 4	=	
	$64 - 16b - 16b + 4b^{2}$ or $64 - 32b + 4b^{2}$ or $60 - 16b - 16b + 4b^{2}$ or $60 - 32b + 4b^{2}$ or	M1	oe Correct expansion or correct expansion – 4		
24	(2b-10)(2b-6) or $(b-5)(b-3)$ or 3 and 5 identified	M1	Correct factorisation of $60 - 32b + 4b^2$ or correctly substitutes into quadratic formula or correctly completes the square to an equation		
	3 < b < 5	A1	SC3 2 < b < 6 or -4 < b <	12	
	Additional Guidance				
	Both inequalities $b < 5$ and $3 < b$ given as their answer			M3 A1	
	Must expand correctly for 2nd M1				
	Must factorise correctly for 3rd M1				
	3 and 5 identified				
	Working with = throughout can gain a maximum of M1 M1 M1 A0 unless recovered				
	Condone use of any letter other than <i>a</i>				

	Alternative method 1			
	$\cos x = \sqrt{\frac{9}{25}} \text{or} \cos x = \frac{3}{5}$	M1	oe	
	or 53.1 or 306.9			
	53.1 and 306.9	A1		
	$\cos x = -\sqrt{\frac{9}{25}} \text{ or } \cos x = -\frac{3}{5}$	M1	oe 126.9 alone (or with 53.1 o	r 306.9) is
			2nd M0	
			233.1 alone (or with 53.1 o 2nd M0	r 306.9) is
	126.9 and 233.1	A1		
	Ad	dditional (Guidance	
	$\cos x$ must be the subject for M marks			
	eg1 $5 \cos x = 3$ (no further valid work)			M0 A0 M0 A0
25	eg2 $\cos x = \pm \sqrt{\frac{9}{25}}$ (no further valid v	M1 A0 M1 A0		
	'Correct' answers rounded or truncated accuracy than 1 dp are penalised 1 acc			
	eg1 53, 306, 127, 233	M1 A1 M1 A0		
	eg2 53, 307	M1 A0 M0 A0		
	eg3 53	M1 A0 M0 A0		
	eg4 53.13, 306.87, 126.87, 233.33	M1 A1 M1 A0		
	Ignore any solutions outside of [0, 360]	.1		
	All four answers with extra answers are	I the final accuracy mark		
	eg1 53.1 306.9 126.9 233.1 90			M1 A1 M1 A0
	eg2 53.13 306.87 126.87 233.33 (loses 2 accuracy marks as accura	s well)	M1 A0 M1 A0	
	53.2 or 306.8 (condone for M marks	5)		M1 A0 M0 A0
	53.2, 306.8, 126.8, 233.2 (condone for M marks)			M1 A0 M1 A0
	Answer line blank, award any marks gained from working lines			

If angles are found in working lines but only some are listed on answer line award any method marks gained from the working lines award any accuracy marks gained from the answer line	
eg1 Working lines $\cos x = \pm \sqrt{\frac{9}{25}}$ 53.1 306.9 126.9 233.1 Answer line 53.1 306.9 233.1	M1 A1 M1 A0
eg2 Working lines $\cos x = \frac{3}{5}$ 53.1 306.9 Answer line 53.1	M1 A0 M0 A0
eg3 Working lines $\cos x = \frac{3}{5}$ 53.1 306.9 $\cos x = -\frac{3}{5}$ 233.1 Answer line 233.1	M1 A0 M1 A0
Answers only of 53.1 and 126.9	
If it is clear which method they are using, mark using the scheme for that method	
If no method is seen, award M1 A1 (alt 2)	

	Alternative method 2			
	$\sin x = \sqrt{\frac{16}{25}}$ or $\sin x = \frac{4}{5}$	M1	oe	
	or 53.1 or 126.9			
	53.1 and 126.9	A1		
	$\sin x = -\sqrt{\frac{16}{25}}$ or $\sin x = -\frac{4}{5}$	M1	oe 233.1 alone (or with 53.1 or 2nd M0	126.9) is
			306.9 alone (or with 53.1 or 2nd M0	r 126.9) is
	233.1 and 306.9	A1		
	Ad	dditional (Guidance	
	sin x must be the subject for M marks			
	eg1 $5 \sin x = 4$ (no further valid work)			M0 A0 M0 A0
25	eg2 $\sin x = \pm \sqrt{\frac{16}{25}}$ (no further valid w	M1 A0 M1 A0		
	'Correct' answers rounded or truncated accuracy than 1 dp are penalised 1 acc			
	eg1 53, 127, 233, 306	M1 A1 M1 A0		
	eg2 53, 127	M1 A0 M0 A0		
	eg3 53	M1 A0 M0 A0		
	eg4 53.13, 126.87, 233.33, 306.87	M1 A1 M1 A0		
	Ignore any solutions outside of [0, 360]	eg –53	.1	
	All four answers with extra answers are	e penalised	the final accuracy mark	
	eg1 53.1 126.9 233.1 306.9 90	M1 A1 M1 A0		
	eg2 53.13 126.87 233.33 306.87 (loses 2 accuracy marks as accura	M1 A0 M1 A0		
	53.2 or 126.8 (condone for M marks)			M1 A0 M0 A0
	53.2, 126.8, 233.2, 306.8 (condone for M marks)			M1 A0 M1 A0
	Answer line blank, award any marks gained from working lines			

If angles are found in working lines but only some are listed on answer line award any method marks gained from the working lines award any accuracy marks gained from the answer line	
eg1 Working lines $\sin x = \pm \sqrt{\frac{16}{25}}$ 53.1 126.9 233.1 306.9 Answer line 53.1 126.9 233.1	M1 A1 M1 A0
eg2 Working lines $\sin x = \frac{4}{5}$ 53.1 126.9 Answer line 53.1	M1 A0 M0 A0
eg3 Working lines $\sin x = \frac{4}{5}$ 53.1 126.9 $\sin x = -\frac{4}{5}$ 233.1	
Answer line 233.1	M1 A0 M1 A0
Answers only of 53.1 and 306.9	
If it is clear which method they are using, mark using the scheme for that method	
If no method is seen, award M1 A1 (alt 1)	

	$2\pi r^2 = \pi r l$ leading to $2r = l$ or $\frac{4\pi r^2}{2} = \pi r l$ leading to $2r = l$	B1	oe Allow verification		
	Additional Guidance				
26(a)	$2\pi r^2 = \pi r l \text{ with appropriate cancelling shown}$ Any incorrect working				
	Verification example				
	(Cone =) $\pi rl = \pi r \times 2r = 2\pi r^2$				
	Hemisphere is $2\pi r^2$ (Must link $2\pi r^2$ with the hemisphere)			B1	

	$(2r)^2 = r^2 + h^2$	M1	oe	
	$h = r\sqrt{3}$ or $h = \sqrt{3r^2}$	A1		
	$\frac{2}{3}\pi r^{3} (+)\frac{1}{3}\pi r^{2} \times \text{their } r\sqrt{3}$	M1	Must replace h with an expression in terms of r	
	Allow $\frac{2}{3}\pi r^3$ to be $\frac{4}{3}\pi r^3$ or $\frac{8}{3}\pi r^3$		3	
	$\frac{1}{3}\pi r^3(2+\sqrt{3})$	A1		
26(b)	with correct method seen			
	Additional Guidance			
	$2r^2 = r^2 + h^2$ is M0 unless recovered			
	$2r^2 = r^2 + h^2$			МО
	h = r			A0
	$\frac{8}{3}\pi r^3 + \frac{1}{3}\pi r^3$			M1
	$3\pi r^3$			A0
	Ignore units			

	8 seen as 2 ³ or 16 seen as 2 ⁴	M1	oe eg 2 ^{3a}	
	2^{3a} and 2^4 seen	M1	oe eg 2 ^{3a+4}	
	$a^2 - 3a - 4 (= 0)$	M1	oe equation eg $a^2 = 3a + 4$	
			ft if all three terms expressed as powers of 2 and a^2 term correct	
	-1 and 4 with correct method seen	A1		
	Additional Guidance			
27	Trial and improvement or answer(s) only		Zero	
	First 2 M marks can be awarded even if subsequent method is not clear			
	2nd M1 may be implied			
	eg $2^{a^2} = 2^{2a}$ $2^3 = 8$ $2^4 = 16$			M1
	$2a = 3a + 4$ (3a + 4 implies 2nd M1) (a^2 term not correct so 3 rd mark is M0)		M1 M0	
	a = -4			A0
	$16 = 2^{4} (2^{3})^{a} = 2^{a^{3}}$ $a^{2} = a^{3} + 4$			M1 M0
	$a^2 = a^3 + 4$			M1 A0