Level 2 Certificate Further Mathematics

Paper 283602
Mark scheme

83602
June 2015

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

M dep A method mark dependent on a previous method mark being awarded.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[\mathbf{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$5 p--10$ or $5 p+10$ or $-10-5 p$ or $5 p=20$ or $5 p=-40$	M 1	oe
4	A 1	
-8	A 1	

Alternative method 2

$\frac{-10+30}{5}$ or $\frac{-10-30}{5}$	M1	oe
4	A1	
-8	A1	

Additional Guidance

Alt 1 M1 may be seen within Pythagoras (which does not have to be correct)

eg $(5 p+10)^{2}+(2-2)^{2}=30$	$[5 p+10$ seen $]$	M1

Only one value correct is likely to score 2 marks

4(a)	Alternative method 1			
	$1-a+2 a=1+a$ and $3(1+a)=3+3 a$		oe Allow $3(1-a+2 a)=3+3 a$ if no incorrect working seen	
	Alternative method 2			
	$\frac{3+3 a}{3}=1+a$ and $1+a-2 a=1-a$		oe	
	Additional Guidance			
	Allow $1 a$ for a throughout			
	Alt 1 $\begin{aligned} & a+2 a=3 a \\ & 3 \times 1=3 \\ & 3+3 a \end{aligned}$ (incorrect working seen)			
	Alt 1$\begin{aligned} & -a+2 a=a \\ & 3 \times a=3 a \\ & 3 \times 1=3 \\ & 3+3 a \end{aligned}$			
	$3(1+a)=3+3 a$			B0
	Alt 1 $\begin{aligned} & 1-a+2 a=1+a \\ & 3 \times 1+a=3+3 a \end{aligned}$ (incorrect working seen)			B0
	Alt 1$\begin{aligned} & 1-a+2 a=1+a \\ & 1+a \\ & \frac{\times 3}{3+3} a \end{aligned}$			B1
	Must use algebra			

4(b)	Alternative method 2			
	$3(3+5 a)$ or $3(3+3 a+2 a)$	M1	oe	
	their $(3+5 a)=\frac{16}{\text { their } 3}$ and their $5 a=\frac{16}{\text { their } 3}-$ their 3	M1	Must divide by their 3 correctly and collect terms correctly their $(3+5 a)$ must be at least two terms	
	$\frac{7}{15} \text { or } 0.4 \dot{6} \text { or } 0.47$	A1	ft from M1 M0 or M0 M1 with 1 error Allow 0.466... or 0.467 SC1 $\frac{13}{3}$ or $4.33 \ldots$ oe	
	Additional Guidance			
	$\frac{7}{15}$ (may be seen in working) with subsequent attempt at evaluation			M1 M1 A1
	$\begin{align*} & 3(3+5 a)=16 \\ & \left.9+5 a=\frac{16}{3} \quad \text { (error in division by } 3\right) \\ & 5 a=\frac{16}{3}-9 \\ & a=-\frac{11}{15} \quad(1 \text { error }) \end{align*}$			M1 M0 A1ft
	$\begin{aligned} & 3(3+5 a)=16 \\ & 9+5 a=\frac{16}{3} \\ & 5 a=\frac{16}{3}+9 \\ & \left.a=\frac{43}{15} \quad \text { (error in division by } 3\right) \\ & \end{aligned} \quad \text { (2 errors) } \quad \text { (eollection) }$			M1 M0 AOft
	For A1ft accept answers rounded to at least 2sf if not an integer			
	$3(3+5 a)=6+5 a$ is two errors so not possible to award A1ft			

6	$\begin{aligned} & 5 x^{6} \text { or }(-) 6 x^{5} \text { or } \\ & a x^{6}-b x^{5} \text { with } a> \end{aligned}$	M1	
	$5 x^{6}-6 x^{5}$	A1	
	Additional Guidance		
	$\frac{5 x^{6}-6 x^{5}}{1}$		M1 A0
	$\frac{5 x^{6}}{1}$ or $(-) \frac{6 x^{5}}{1}$		M1 A0

8(c)	$5 x-3<1$ or $-2<5 x-3$ or $-2<5 x-3<1$	M1	oe eg $x<\frac{4}{5}$ or $\frac{1}{5}<x$ or $1<5 x<4$	
	$\frac{1}{5}<x<\frac{4}{5} \quad \text { or } \quad 0.2<x<0.8$	A1	oe SC1 $\frac{1}{5}<\mathrm{h}(x)<\frac{4}{5}$ (condone absence of (x) or absence of brackets) or $\frac{1}{5}<y<\frac{4}{5}$ or $\frac{1}{5} \leq x \leq \frac{4}{5}$	
	Additional Guidance			
	Both inequalities $x<\frac{4}{5}$ and $\frac{1}{5}<x$ given as their answer			M1 A1
	M1 Must use correct inequality symbol unless recovered in the A mark $5 x-3 \leq 1$ or $5 x-3>1$ (answer not correct)			MO AO
	M1 If using equations award M0 unless recovered in the A mark$\begin{aligned} & 5 x-3=1 \quad 5 x-3=-2 \\ & 0.2<x<0.8 \end{aligned}$			M1 A1

9(a)	Alternative method 1			
	$12 y-18$	B1		
	$12 y-2 y=10+18$	M1	Collects terms Allow one sign or arithmetic error ft their expansion	
	2.8 or $\frac{14}{5}$	A1ft	oe fraction Only ft an incorrect expansion	
	Additional Guidance			
	For A1ft accept answers rounded to at least 2sf if not an integer			
	Omitting a term is not a sign or arithmetic error$\begin{aligned} & 12 y-18=2 y \\ & y=1.8 \end{aligned}$			B1 M0 AOft
	$\begin{aligned} & 12 y-9-10=2 y \\ & 10 y=19 \\ & y=1.9 \end{aligned}$			$\begin{aligned} & \mathrm{B0} \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$
	$12 y-3-10=2 y$ $12 y-2 y=10-3 \quad$ (one sign error) $y=0.7$			B0 M1 AOft
	$\begin{array}{ll} 8 y-18-10=2 y \\ 8 y-38=2 y & \text { (one arithmetic error) } \\ y=6.3 & \text { (M1 implied) } \end{array}$			B0 M1 AOft
	$12 y-18-10=2 y$ $14 y=28 \quad$ (one sign error) $y=2 \quad$ (no ft as their expansion is correct/cannot give full marks with an error)			B1 M1 AOft

Alternative method 2

$2 y-3-\frac{10}{6}=\frac{2 y}{6}$	B1	oe
$2 y-\frac{2 y}{6}=3+\frac{10}{6}$	M1	Collects terms Must have at least one of $\frac{10}{6}$ or $\frac{2 y}{6}$ oe Allow one sign or arithmetic error ft their division by 6
2.8 or $\frac{14}{5}$	A1ft	oe fraction Only ft an incorrect division by 6

Additional Guidance
For A1ft accept answers rounded to at least 2sf if not an integer

9(a)

(error in division by 6)	B0
	M1
	A1ft
$2 y-3-10=\frac{2 y}{6} \quad($ error in division by 6$)$	B0
$2 y+\frac{2 y}{6}=3+10 \quad$ (one sign error)	M1
$\frac{39}{7} \quad$ (only ft an incorrect division by 6)	AOft
$2 y-3-\frac{10}{6}=\frac{2 y}{6}$	B1
$2 y-\frac{2 y}{6}=3-\frac{10}{6} \quad$ (one sign error)	M1
0.8 (no ft as their division by 6 is correct/cannot give full marks with an error)	AOft

Alternative method 1

$(\operatorname{grad} \mathrm{CP}=) \frac{8-6}{2-3}$ or -2	M1	oe
(grad PT $=$) $\frac{ \pm 1}{\text { their }-2}$ or $\pm \frac{1}{2}$	M1	oe
$\frac{t-8}{-4-2}=$ their grad PT	M1dep	oe dep on 2nd M1
5	A 1	

Alternative method 2

(grad CP $=$) $\frac{8-6}{2-3}$ or -2	M1	oe
(grad PT $=$) $\frac{ \pm 1}{\text { their }-2}$ or $\pm \frac{1}{2}$	M1	oe
$y=$ (their grad PT) $x+c$ and substitutes $(2,8)$ to find c and substitutes $x=-4$ into their equation or $y-8=$ their grad PT($x-2$) and substitutes $x=-4$ into their equation	M1dep	oe dep on 2nd M1
5	A1	

10	Alternative method 3		
	$(8-6)^{2}+(2-3)^{2}$ or $(t-8)^{2}+(-4-2)^{2}$ or $(t-6)^{2}+(-4-3)^{2}$	M1	oe $C P=\sqrt{5}$ may be seen on the diagram
	their $\mathrm{CP}^{2}+$ their $\mathrm{PT}^{2}=$ their CT^{2} with at least two of $\mathrm{CP}^{2}, \mathrm{PT}^{2}$ and CT^{2} correct	M1dep	oe their PT^{2} and their CT^{2} must both be in terms of t
	$\begin{aligned} & (8-6)^{2}+(2-3)^{2}+ \\ & (t-8)^{2}+(-4-2)^{2}= \\ & (t-6)^{2}+(-4-3)^{2} \end{aligned}$ or $\begin{aligned} & t^{2}-8 t-8 t+64+36+4+1 \\ & =t^{2}-6 t-6 t+36+49 \end{aligned}$	M1	oe eg $20=4 t$ Must be fully correct method
	5	A1	
		ditional	uidance
	Answer of 5 gains full marks (could be	restart)	

11(a)	$3 w^{2}+2 w y-12 w y-8 y^{2}$	M1	oe 4 terms with 3 correct Terms may be seen in a grid May be implied eg1 $3 w^{2}-10 w y+8 y^{2}$ eg2 $w^{2}-10 w y-8 y^{2}$	
	$3 w^{2}+2 w y-12 w y-8 y^{2}$	A1	Fully correct Do not allow if only seen in a grid	
	$3 w^{2}-10 w y-8 y^{2}$	A1ft	$\mathrm{ft} \mathrm{M1} \mathrm{A0}$	
	Additional Guidance			
	Accept $y w$ for wy throughout			
	A correct term must include a - sign if it is negative			
	$\begin{aligned} & 3 w^{2}+2 w y-12 w y-8 y \\ & 3 w^{2}-10 w y-8 y \end{aligned}$			M1 A0 A1ft
	$\begin{aligned} & 3 w^{2}+2 w y+12 w y-8 y^{2} \\ & 3 w^{2}+14 w y-8 y \quad \text { (does not ft from previous line) } \end{aligned}$			M1 A0 AOft
	$3 w-10 w y-8 y^{2} \quad$ (implied M1 and A1ft as terms collected)			M1 A0 A1ft
	$\begin{aligned} & 3 w^{2}+2 w y-12 w y-8 w y \\ & 3 w^{2}-18 w y \end{aligned}$			M1 A0 A1ft
	$3 w^{2}+10 w y-8 y^{2}$			MO AO AOft
	Penalise the 2nd A1 if further work seen$3 w^{2}-10 w y-8 y^{2}=3 w^{2}-18 w y^{2}$			M1 A1 A0ft

11(b)	$\frac{3 x}{3 x^{2}} \text { or } \frac{9 x^{2}}{x^{2}} \text { or }(-) \frac{3}{x^{2}}$	M1	$\begin{gathered} \text { oe eg1 } \frac{3 \times x}{x^{2} \times 3} \\ \quad \text { eg2 } 9 \end{gathered}$ One correct product, unsimplified or simplified
	$\frac{3 x}{3 x^{2}}+\frac{9 x^{2}}{x^{2}}-\frac{3}{x^{2}}$ or $\frac{1}{x}+\frac{9 x^{2}}{x^{2}}-3 x^{-2}$ or $\frac{3 x+27 x^{2}}{3 x^{2}}-\frac{3}{x^{2}} \quad$ or $\frac{x}{x^{2}}+\frac{9 x^{2}-3}{x^{2}}$ or $\frac{9 x^{2}}{x^{2}}+\frac{3(x-3)}{3 x^{2}}$ or $\frac{3 x+27 x^{2}-9}{3 x^{2}}$	A1	oe Fully correct expansion of given expression that requires further simplification Multiplication signs not allowed unless recovered eg $\frac{3 \times x}{x^{2} \times 3}+\frac{9 x^{2}}{x^{2}}-\frac{3}{x^{2}} \quad$ M1 A0
	$\begin{array}{ll} \frac{1}{x}+9-\frac{3}{x^{2}} & \text { or } \\ x^{-1}+9-3 x^{-2} & \text { or } \\ \frac{1}{x}+\frac{9 x^{2}-3}{x^{2}} & \text { or } \\ x^{-1}+\frac{9 x^{2}-3}{x^{2}} & \text { or } \\ \frac{x-3}{x^{2}}+9 & \text { or } \\ \frac{1+9 x}{x}-\frac{3}{x^{2}} & \text { or } \\ \frac{x+9 x^{2}-3}{x^{2}} & \end{array}$	A1	oe Any of these answers implies M1 A1 A1 Do not allow $\frac{9}{1}$ for 9 Multiplication signs or brackets that require expansion not allowed unless recovered After M1 A1 A1 penalise further work eg $\frac{x+9 x^{2}-3}{x^{2}}$ followed by $\frac{3 x+27 x^{2}-9}{3 x^{2}}$ M1 A1 A0
	Additional Guidance		
	3 mark responses with fractions must have fractions in their simplest form		

12	$\frac{1}{2}(x) x(x) y(x) \sin 30=x^{2}$	M1	oe equation	
	$y=4 x$	A1	Any unsimplified form but must have y as the subject	
	Additional Guidance			
	$\frac{1}{2}(x) x(x) y(x) \frac{1}{2}=x^{2}$			M1
	Unsimplified forms may involve fractions and/or sin 30 not evaluated eg $\frac{4 x^{2}}{x}=y$			M1 A1
	If a 2 mark response is seen in the working lines, ignore any subsequent attempt to simplify unless the attempt produces an answer that does not have y as the subject eg1 $y=\frac{4 x^{2}}{x}$ in working and $x=\frac{4}{y}$ on answer line			M1 A0

14(a)	Alternative method 1				
	$3 \times \frac{3}{2}$	$3 \times \frac{5}{2}$	M1	$3 \div \frac{2}{3}$ is equivalent to $3 \times \frac{3}{2}$ $3 \div \frac{2}{5}$ is equivalent to $3 \times \frac{5}{2}$ $5 \times \frac{3}{2}$ is equivalent to $3 \times \frac{5}{2}$	
	$6+\frac{3}{2} \times 3=10.5$ or $\begin{aligned} & 3+3+\frac{3}{2} \times 3 \\ & =10.5 \end{aligned}$	$3+\frac{5}{2} \times 3=10.5$	A1		
	Additional Guidance				
	M1 Do not allow 4.5 or 7.5 unless correct method or scale factor also seen				
	$6+3+\frac{3}{2}$				M0

14(a)	Alternative method 2				
	$10.5-6=4.5$ and $4.5 \div \frac{3}{2}=3$	$10.5-3=7.5$ and $7.5 \div \frac{5}{2}=3$	B2	May be seen in one step $4.5 \times \frac{2}{3}=3$ is equivalent to $4.5 \div \frac{3}{2}=3$ $7.5 \times \frac{2}{5}=3$ is equivalent to $7.5 \div \frac{5}{2}=3$	
	Additional Guidance				
	Do not allow 4.5 and 3 unless correct method also seen				
	Do not allow 7.5 and 3 unless correct method also seen				
	B1 not possible for this method which is verification by working back to the x-coordinate of P				
	Allow further addition of 3 (to obtain x-coordinate of Q)				

14(a)	Alternative method 3				
	$\frac{10.5-6}{3}=1.5$ and $\frac{6-3}{2}=1.5$	$\frac{10.5-3}{5}=1.5$ and $\frac{6-3}{2}=1.5$	B2	$\begin{aligned} & \text { oe } \\ & \text { eg } \frac{10.5-6}{3}=1.5 \\ & \text { and } \\ & \frac{10.5-3}{5}=1.5 \end{aligned}$	
	Additional Guidance				
	Do not allow 1.5 unless two correct methods also seen				
	B1 not possible for this method which is verification by working to 1.5 in two ways				

14(a)	Alternative method 6				
	Correct algebra using ratio $2: 3$ eg1 $\frac{a-3}{6-3}=\frac{5}{2}$ eg2 $\frac{a-6}{6-3}=\frac{3}{2}$ eg3 $\frac{a-3}{a-6}=\frac{5}{3}$ eg4 $\frac{3 \times 3+2 \times a}{5}=6$	M1	oe		
	$\begin{aligned} & \text { Correct working leading to } 10.5 \\ & \text { eg1 } a-3=7.5 \text { and } a=10.5 \\ & \text { eg2 } a-6=4.5 \text { and } a=10.5 \\ & \text { eg3 } 3(a-3)=5(a-6) \\ & \\ & \text { and } a=10.5 \\ & \text { eg4 } 9+2 a=30 \text { and } a=10.5 \end{aligned}$	A1	Must see method for M1		
	Additional Guidance				
	Equivalents for M1 include (eg1) $2 a-6=15$ (eg2) $\frac{6-3}{a-6}=\frac{2}{3}$ (eg3) $3(a-3)=5(a-6)$ (eg4) $\frac{9+2 a}{5}=6$				
	For A1 there must be at least one correct working step seen (and no incorrect working)				

14(b)	Alternative method 1			
	$\frac{8 b}{2} \times 3$ or $12 b$	$\frac{8 b}{2} \times 5 \text { or } 20 b$	M1	oe
	$\begin{aligned} & 9 b+\frac{8 b}{2} \times 3=7 \\ & \text { or } 21 b=7 \end{aligned}$	$b+\frac{8 b}{2} \times 5=7$ or $21 b=7$	M1dep	oe
	$\frac{1}{3}$		A1	Allow 0.33...
	Additional Guidance			
	2nd M1 implies the 1st M1			
	If $\frac{1}{3}$ is clearly from incorrect method seen, do not award marks			

14(b)	Alternative method 2			
	Correct algebra using ratio $2: 3$ eg1 $\frac{7-b}{9 b-b}=\frac{5}{2}$ eg2 $\frac{7-9 b}{9 b-b}=\frac{3}{2}$ eg3 $\frac{9 b-b}{6-3}=\frac{7-b}{10.5-3}$ eg4 $\frac{7-9 b}{10.5-6}=\frac{7-b}{10.5-3}$ eg5 $\frac{7-9 b}{10.5-6}=\frac{9 b-b}{3}$ eg6 $\frac{7-b}{7-9 b}=\frac{5}{3}$ eg7 $\frac{3 \times b+2 \times 7}{5}=9 b$	M1	oe	
	Further correct simplification eg cross multiplication or expanding brackets $\begin{aligned} & \text { eg1 } 2(7-b)=5(9 b-b) \\ & \text { eg2 } 14-18 b=24 b \\ & \text { eg3 } 60 b=21-3 b \\ & \text { eg4 } 52.5-67.5 b=31.5-4.5 b \\ & \text { eg5 } 21-27 b=36 b \\ & \text { eg6 } 21-3 b=35-45 b \\ & \text { eg7 } 3 b+14=45 b \end{aligned}$	M1dep	oe	
	$\frac{1}{3}$	A1	Allow 0.33...	
		ditional	uidance	
	2nd M1 implies the 1st M1			
	If $\frac{1}{3}$ is clearly from incorrect method	n, do no	ward marks	

Alternative method 1

$8\left(c^{2}+2\right)$ or $3\left(c^{2}+2\right)$	M 1	
$\frac{8\left(c^{2}+2\right)}{3\left(c^{2}+2\right)}$	A 1	
$\frac{8}{3}+\frac{1}{3}=3$	A 1	

Alternative method 2

Converts to a valid common denominator with at least one numerator correct $\begin{aligned} & \text { eg1 } \frac{3\left(8 c^{2}+16\right)}{3\left(3 c^{2}+6\right)}+\frac{3 c^{2}+6}{3\left(3 c^{2}+6\right)} \\ & \text { eg2 } \frac{8 c^{2}+16+c^{2}+2}{3 c^{2}+6} \end{aligned}$	M1	oe Other valid common denominators include $9 c^{2}+18 \text { and } 3\left(c^{2}+2\right)$	
Makes into a single fraction with terms collected eg1 $\frac{27 c^{2}+54}{3\left(3 c^{2}+6\right)}$ eg2 $\frac{9 c^{2}+18}{3 c^{2}+6}$	A1	oe	
Shows that fraction simplifies to 3 eg1 $\frac{9\left(3 c^{2}+6\right)}{3\left(3 c^{2}+6\right)}=3$ eg2 $\frac{3\left(3 c^{2}+6\right)}{3 c^{2}+6}=3$ eg3 $\frac{9\left(c^{2}+2\right)}{3\left(c^{2}+2\right)}=3$	A1	oe Must see a correct common and $=3$	uadratic facto
Additional Guidance			
Answer of 3 does not gain marks without correct working for M1 A1 (1st) seen			
Do not allow $\frac{3}{1}$ unless subsequently becomes 3			

Alternative method 2

| $x(2 x-1)=9$ | M1 | |
| :--- | :--- | :--- | :--- |
| $2 x^{2}-x-9(=0)$ | A1 | oe equation with brackets expanded |
| $2\left[\left(x-\frac{1}{4}\right)^{2} \ldots \ldots\right]$ | | Attempt to complete the square for their
 3-term quadratic
 ft their 3-term quadratic |
| $2\left[\left(x-\frac{1}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}-\frac{9}{2}\right]=0$ | A1ft | oe
 eg 2[($\left.\left.x-\frac{1}{4}\right)^{2}-\frac{73}{16}\right]=0$ |

17(a)	Alternative method 1			
	$\begin{aligned} & \left(\mathrm{DB}^{2}=\right) 34^{2}-16^{2} \text { or } 900 \text { or } \\ & (\mathrm{DB}=) 30 \end{aligned}$	M1	M2 $\left(\mathrm{DB}^{2}=\right) 34^{2}-16^{2}-18^{2}$	
	their $\mathrm{DB}^{2}-18^{2}$ or 576	M1		
	24	A1		
	Alternative method 2			
	$(\mathrm{DB}=) 34 \times \cos \left(\sin ^{-1} \frac{16}{34}\right) \quad$ or $34 \times \sin \left(\cos ^{-1} \frac{16}{34}\right)$ or 30 or $\frac{16}{\tan \left(\sin ^{-1} \frac{16}{34}\right)}$ or $16 \times \tan \left(\cos ^{-1} \frac{16}{34}\right)$ or 30	M1	Allow $34 \times \cos [28,28.1]$ or $34 \times \sin [61.9,62]$ or $\frac{16}{\tan [28,28.1]}$ or $16 \tan [61.9,62]$	
	$\begin{aligned} & \text { their } D B \times \cos \left(\sin ^{-1} \frac{18}{\text { their } D B}\right) \text { or } \\ & \text { their } D B \times \sin \left(\cos ^{-1} \frac{18}{\text { their } D B}\right) \text { or } \\ & \frac{18}{\tan \left(\sin ^{-1} \frac{18}{30}\right)} \text { or } \\ & 18 \times \tan \left(\cos ^{-1} \frac{18}{\text { their } D B}\right) \end{aligned}$	M1	Allow their $\mathrm{DB} \times \cos [36.8,36.9]$ or their $\mathrm{DB} \times \sin 53.1 \ldots \quad$ or $\frac{18}{\tan [36.8,36.9]}$ or $18 \tan 53.1 \ldots$	
	24	A1		
	Additional Guidance			
	Alt 1576			M1 M1
	Note that $\sqrt{16^{2}+18^{2}}=24.08 \ldots .$. so do not award marks for 24 from this method			
	Allow if they use correct Pythagoras for one M mark and correct trigonometry for the other M mark			
	Marks may be gained from using correct cosine rule (up to $A B^{2}=$) or correct sine rule (up to $A B=$)			

18(a)	(1 (or a) is) Midway between 0 and 2 or $\frac{2+0}{2}=1 \quad$ or $\quad \frac{2-0}{2}=1$	B1	oe	
	Minimum point (at $x=1($ or $x=a)$) or Symmetrical (about $x=1$ (or $x=a)$)	B1	oe	
	Additional Guidance			
	For minimum allow stationary or turning or lowest or vertex			
	Line of symmetry			B
	Do not award B2 if an error seen eg $\frac{2-0}{2}=2$ is an error			
	Substitution of points in given equation does not score but ignore if other valid reason(s) seen			
	Ignore other non-contradictory reasons			

18(b)	$10=4(0-1)^{2}+b$ or $10=4(2-1)^{2}+b$	M1	oe eg $10=$	
	6	A1		
	Additional Guidance			
	If expansion before substitution, expansion must be fully correct$\begin{aligned} \text { eg1 } & 4\left(x^{2}-x-x+1\right)+b \\ & 4\left(2^{2}-2-2+1\right)+b=10 \\ \text { eg2 } & 4 x^{2}-2 x+1+b \\ & 16-4+1+b=10 \end{aligned}$			M1 MO AO
	a must not be present for M1 or A1			

18(c)	$\begin{aligned} & 4\left(x^{2}-x-x+1\right)+b \text { or } \\ & 4\left(x^{2}-x-x+1\right)+\text { their } 6 \end{aligned}$	M1	oe correct expan eg $4 x^{2}-8 x+10$ Value for b does	used
	$y=4 x^{2}-8 x+10$	A1ft	Must have $y=$ Only ft their value	
	Additional Guidance			
	A1ft is $y=4 x^{2}-8 x+4+$ their value for b			
	a must not be present for M1 or A1			
	$y=4 x^{2}-8 x+10$ seen in working with $4 x^{2}-8 x+10$ on answer line			M1 A1

20(a)	Rotation and 270 (anti-clockwise) and centre O or Rotation and 90 clockwise and centre O	B2	oe B1 270 (anti-clockwise) Do not allow if reflection enlargement also stated	lockwise ation or
	Additional Guidance			
	270 is anti-clockwise by default so 'anti-clockwise' not required for B2 or B1			
	270			B1
	270 clockwise			B0
	Response that is not a single transformation is always B0 eg Rotation, 270 (anti-clockwise), centre $O \quad$ Scale factor 3 (enlargement)			B0
	Reflection 270 (anti-clockwise)			B0
	Rotation and 270 clockwise and centre O			B0
	Turn 90 clockwise centre O (B1 for 90 clockwise)			B1
	Do not allow a circular arrow for clockwise direction eg 90 with circular arrow indicating clockwise			B0
	Do not allow quarter turn etc eg Quarter turn clockwise			B0

20(b)	Rotation and 180 and centre O or Enlargement and scale factor -1 and centre O	B2	oe B1 Rotation and 180 or Enlargement and scale fac $\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$	$r-1$	or
	Additional Guidance				
	Response that is not a single transformation is always B0 unless they give the two possible B2 answers				
	Rotation through 180 clockwise about O			B2	
	Rotation through 180 anti-clockwise about O			B2	
	For B2 or B1 ignore a circular arrow as direction not required				
	Do not allow half turn or turn eg1 Half turn eg2 Turn 180			B0 B0	
	$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ from multiplying given matrices in either order			B1	
	Allow matrix to have brackets missing and/or commas but must be 2 by 2 array				
	$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ scores B1 even if description of transformation is incorrect				
	$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ seen followed by multiplication of matrix by a vector is not a choice			B1	

21	2--4 or 6 or $10-\mathbf{- 2 6}$ or 36 or $-4-2$ or -6 or $-26-10$ or -36	M1	May be seen on diagram	
	$\frac{1}{2} \times(2--4) \times(10--26)$ or $\frac{1}{2} \times 6 \times 36$ or -108	M1	oe eg $\frac{1}{2} \times 6 \times 36 \times \sin 90$ Allow (2--4) to be (-4 - 2) Allow (10 - -26) to be $(-26-10)$	
	108	A1	SC2 Answer 108 but clearly used normal at A and tangent at B	
	Additional Guidance			
	2nd M1 implies the 1st M1			
	-108 is M1 M1 A0 unless recovered			
	Diagram showing triangle with vertices in 2nd, 3rd and 4th quadrants and answer 108			SC2
	Diagram showing rectangle or 2 triangles and answer 108			M1 M1 A1

22(a)	Alternative method 1			
	Second differences -4	M1	Implied by $-2 n^{2}$	
	Subtracts $\frac{\text { their }-4}{2} n^{2}$ from given sequence $\begin{array}{llll}\text { or } & 304 & 608 & 912\end{array}$	M1	At least 3 correct values implies correct method (next term is 1216)	
	$-2 n^{2}+304 n$	A1	oe eg $n(304-2 n)$ Allow any letter	
	Alternative method 2			
	Any 3 of $\begin{aligned} & a+b+c=302 \\ & 4 a+2 b+c=600 \\ & 9 a+3 b+c=894 \\ & 16 a+4 b+c=1184 \end{aligned}$	M1	Using $a n^{2}+b n+c$	
	Correctly eliminates the same letter using two different pairs of equations eg $3 a+b=600-302$ and $5 a+b=894-600$	M1		
	$-2 n^{2}+304 n$	A1	oe eg $n(304-2 n)$ Allow any letter Allow $a=-2 \quad b=304 \quad c=0$ if $a n^{2}+b n+c$ seen earlier	
	Additional Guidance			
	Condone mixed letters and/or inclusion of $=0$$\begin{aligned} & \text { eg1 }-2 n^{2}+304 x \\ & \text { eg } 2-2 n^{2}+304 n=0 \end{aligned}$			M1 M1 A1 M1 M1 A1
	Alt 1 2nd differences $=4$ $300 \quad 592 \quad 8761152$			M0 M1 A0

22(b)	$n(-2 n+304) \text { or } 2 n(-n+152)$ or $2 n=304$	M1	oe Factorises correctly to two linear factors or substitutes correctly in quadratic formula or correctly completes the square to a correct equation or simplifies to $a n=b$ ft their quadratic	
	152	A1		
	Additional Guidance			
	152 and 0			M1 A0
	M1 Factorising may be seen after division eg if (a) correct $n(-n+152)$			M1
	Their quadratic must have at least two terms for M1			
	Only ft for M1 A0			
	If their quadratic in (a) is incorrect, check for M1 A0 using their answer (correct to at least 1 dp) if method not shown			
	Do not award M1 if their quadratic from (a) has solution $n=0$			

23	4th box indicated unambiguously	B1	

	If angles are found in working lines but only some are listed on answer line award any method marks gained from the working lines award any accuracy marks gained from the answer line eg1 Working lines $\cos x= \pm \sqrt{\frac{9}{25}} \quad \begin{array}{llll}53.1 & 306.9 & 126.9 & 233.1\end{array}$ Answer line $53.1 \quad 306.9 \quad 233.1$ eg2 Working lines $\cos x=\frac{3}{5}$ $53.1 \quad 306.9$ Answer line 53.1 eg3 Working lines $\cos x=\frac{3}{5} \quad 53.1 \quad 306.9 \quad \cos x=-\frac{3}{5} \quad 233.1$ Answer line 233.1	M1 A1 M1 A0 M1 A0 M0 A0 M1 A0 M1 A0
	Answers only of 53.1 and 126.9 If it is clear which method they are using, mark using the scheme for that method If no method is seen, award M1 A1 (alt 2)	

	If angles are found in working lines but only some are listed on answer line award any method marks gained from the working lines award any accuracy marks gained from the answer line $\begin{array}{llllll}\text { eg1 Working lines } \sin x= \pm \sqrt{\frac{16}{25}} & 53.1 & 126.9 & 233.1 & 306.9\end{array}$ Answer line $53.1 \quad 126.9 \quad 233.1$ eg2 Working lines $\sin x=\frac{4}{5} \quad 53.1 \quad 126.9$ Answer line 53.1 eg3 Working lines $\sin x=\frac{4}{5} \quad 53.1 \quad 126.9 \quad \sin x=-\frac{4}{5} \quad 233.1$ Answer line 233.1	M1 A1 M1 A0 M1 A0 M0 A0 M1 A0 M1 A0
	Answers only of 53.1 and 306.9 If it is clear which method they are using, mark using the scheme for that method If no method is seen, award M1 A1 (alt 1)	

26(a)	$2 \pi r^{2}=\pi r l$ leading to $2 r=l$ or $\frac{4 \pi r^{2}}{2}=\pi r l$ leading to $2 r=l$	B1	oe Allow verif	
	Additional Guidance			
	$2 \pi r^{2}=\pi r l$ with appropriate cancelling shown			B1
	Any incorrect working			B0
	Verification example $(\text { Cone }=) \pi r l=\pi r \times 2 r=2 \pi r^{2}$ Hemisphere is $2 \pi r^{2} \quad$ (Must link $2 \pi r^{2}$ with the hemisphere)			B1

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

