Centre Number	Candidate Number	
Surname	MR BARTON'S	
Other Names	SOLUTIONS	
Candidate Signature		

Level 2 Certificate in Further Mathematics June 2015

Further Mathematics

8360/1

Level 2

Paper 1 Non-Calculator

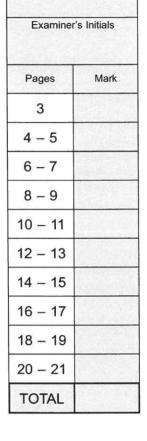
Monday 15 June 2015 9.00 am to 10.30 am

For this paper you must have:

mathematical instruments.

You may not use a calculator.

Time allowed

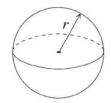

• 1 hour 30 minutes

Instructions

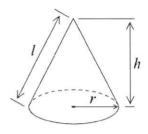
- Use black ink or black ball-point pen. Draw diagrams in pencil.
- · Fill in the boxes at the top of this page.
- · Answer all questions.
- · You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- · Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- · You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

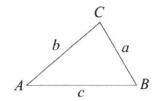

For Examiner's Use

Formulae Sheet


Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere =
$$4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$


Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

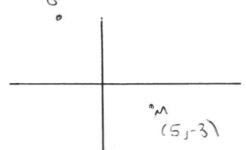
The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

[2 marks]


Answer all questions in the spaces provided.

1 GH is a straight line.

The coordinates of G are (-2, 8)The midpoint of GH is (5, -3)

Work out the coordinates of *H*.

Turn over for the next question

2 A straight line with equation y = mx + chas gradient m and y-intercept c.

Here are the equations of four straight lines, P, Q, R and S.

- P 2y - 4x = 5
- Q 5y = 2x - 4

- R 2y 4 = 5x
- S 4y = 5 2x
- 2 (a) Circle the line that passes through (7, 2)

[1 mark]

- Р

- S

Circle the line with gradient $2\frac{1}{2}$ 2 (b)

[1 mark]

- P
- Q

$$R$$
 S
 $\Rightarrow 2y = 5x + 4$
 $\Rightarrow y = 2.5x + 2$

Circle the line with y-intercept $2\frac{1}{2}$ 2 (c)

[1 mark]

- R
- S

2 (d) Circle the line with a negative gradient. [1 mark]

- P
- Q
- R

2 (e) Circle a pair of perpendicular lines.

R

grad = -0.5

9 grad = 2

3	Solve	2(3x+1) > 3-4x	[2 marks]
		600 + 2 > 3 - 401	
	+600	/10xc +2 > 3	
	-2) 10x > 1	
	310	X > 10 0- 0.)	
)	

Answer

Turn over for the next question

Turn over ▶

- 4 The equation of a curve is $y = x^2 5x$
- 4 (a) Work out $\frac{dy}{dx}$

[2 marks]

Answer $\frac{dy}{dx} = 2x - 5$

4 (b) *P* is a point on the curve. The tangent to the curve at *P* has gradient 1

Work out the coordinates of P.

[2 marks]

Gradient = 1 > Dx = 1

 $\Rightarrow 2x - 5 = 1$ +5 \ 2x = 6 =2 \ \ x = 3

y = >c² - 5>c → (3)² - 5/3) = 9-15 = -6

Answer (.....3....,)

5	In the expansion of $(x+2)(x^2+kx-3)$ the coefficient of x^2 is zero.
5 (a)	Work out the value of k . Group Terms Together [1 mark]
	$x^3 + kx^2 - 3x + 2x^2 + 2kx - 6$
	$9 \times 3 + (k+2)x^2 + (2k-3)x - 6$
	1
	K=-2
	V 7
	Answer
5 (b)	Work out the coefficient of x .
	From above $\Rightarrow (2K-3)x$
	>[2(-2)-3]x
	- 7 <i>)</i> (
	Answer

Turn over for the next question

0 7

Turn over ▶

6 A bag contains 5x red balls and 2x blue balls.

The number of red balls is decreased by 20%

The number of blue balls is increased by 30%

There are now 35 more red balls than blue balls in the bag.

Work out the value of x.

[4 marks]

RED	5x	0.8)	
	2×	1.3		5 020	Anonh

$$L_{xx} - 2.b_{x} = 3.5$$

$$\Rightarrow 1.4_{x} = 3.5$$

$$\Rightarrow c = 3.5 = 3.50 = 5.0$$

• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	•••••	 •••••
		-)	X	Ξ	25				

7	$3x^3 - 2x^2 - 147x + 98 \equiv (ax - c)(bx + d)(bx - d)$	
	where a , b , c and d are positive integers.	
	Work out the values of a , b , c and d .	. 7
	$\left(\frac{1}{x^3}\right) \left(\frac{3}{3}x^3\right) = \left(\frac{3}{ab^3}\right)x^3$ [3 marks	i]
	Only positive integer that wern are a=3 6=1	
	Number 98 = -(x d x - d	
	→ 98 = cJ²	
	Only positive integers that work are $c=2$, $d=$ as $7 \times 7^2 = 98$	
	43 2 × 1	

Turn over for the next question

P/Jun15/8360/1

8 Simplify fully $\frac{5x}{(x+4)(x-6)} - \frac{3}{(x-6)}$

[4 marks]

Need common denominator:

$$\frac{5x}{(x+4)(x-b)} - \frac{3(x+4)(x-b)}{(x+4)(x-b)}$$

$$= \frac{50c - 30c - 12}{(3c + 4)(3c - 6)}$$

$$= \frac{2x - 12}{(x+4)(x-6)}$$

$$= \frac{2(x-6)}{(x+u)(x-6)}$$

Answer

9 Given that
$$\begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ a+1 \end{pmatrix}$$

work out the values of a and b.

[5 marks]

$$\begin{bmatrix} 3 & -1 \\ 5 \end{bmatrix} \begin{bmatrix} 60 \\ 6+10 \end{bmatrix}$$

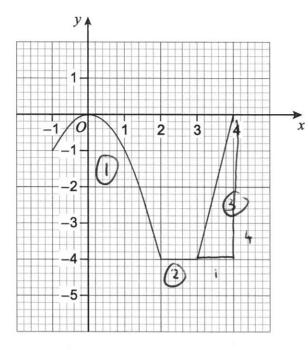
②
$$2a + b = a + 1$$

5us in ①
⇒ $2a + 1.5a = a + 1$
⇒ $3.5a = a + 1$
⇒ $2.5a = 1$
⇒ $5a = 2$
⇒ $a = \frac{2}{5}$

$$b = 1.5a$$

$$\Rightarrow b = 1.5 \times \frac{2}{5} = \frac{3}{2} \times \frac{2}{5} = \frac{6}{10} \text{ or } \frac{3}{5}$$

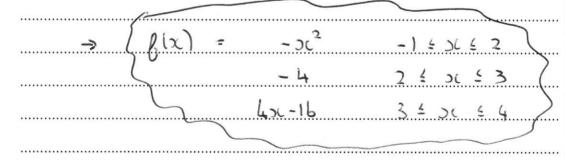
$$a = \frac{2}{5}$$
, $b = \frac{3}{5}$


10 (b)	Work out the equation of the normal to the curve at the point $(1, -2)$ Give your answer in the form $y = mx + c$ [5 marks] When $x = 1$, $\int x = 3(1)^2 - 4(1) - 4 = -5$ Grad of target = -5, so grad of normal = $\frac{1}{5}$
	Answer

Turn over for the next question

Turn over ▶

11 Here is the graph of y = f(x)


It consists of a quadratic curve and two straight lines.

Define f(x), stating clearly the domain for each part.

[4 marks]

$$0 y = -x^2$$

$$f(x) = \dots$$

15

Make y the subject of	$\sqrt{\frac{3xy}{x+y}} = 4$
	Make y the subject of

[4 marks]

	4			 	
Squar 2	3064	= 16		 	
	x+y				
× (3619) {	3219	= 16(50	+ 4)	 	
	3х.у	= 1626	+ 169	 	
- 16g (3xy - 16	.g. = 1	6 20	 	
FACT	y (3)c-	. 16) =	16 30	 	
= (3x-16) {	<u>.</u>	2	ibsc	 	
1					
				 	,

Answer

Turn over for the next question

Turn over ▶

13	$x^2 + 2ax + b \equiv (x - 5)^2 - a$	
	Work out the values of a and b .	
	$(x-5)^2-a$	[3 marks]
	$= x^2 - 10x + 25 - a$	
	$= x^2 + 24x + b$	
	5 x -10 = 2a → a = -5	
	$[umBer]$ 25 - $\alpha = b$	
	25 ~ (-5) = b	
	-> b = 30	

14	Write	$\frac{5\sqrt{2}}{3\sqrt{6}-7}$	in the form	$\sqrt{w} + \sqrt{k}$	where w and k are integers.
					[5 marks]
	PATE	NACISE			
			302	× 3J6 +	
			3Jb - 7	3J6 +	٦
		= <u>15</u> Ji	2 4 35/2	·	
		54	+21/6-21	6-49	
		= 15,	Ji2 + 35J	2	
			5		
		= 35	$12 + 7\sqrt{2}$		
		× 354	203 1 7)2_	
		= 12)	-		
			-		
			J12 + 1	_	
		= 5	09 + 1	198	
		Ans	swer V 108	+ 198	

15 (a)	Give reasons why angle $RZT=b$ [2 marks]
	Tongets from an external point are equal is length
	-> RTZ is an Isosceles Triungle
	So base angles are equal
15 (b)	Angle $RZT = b$
	Prove that angle XTW = angle YTZ
	[3 marks]
	YXT = a (angles in alternate Segment are equal)
	* Ja
	(45)
	180-(c+5) ×+w = a+b
	asb Exterior ages in
	a triusie, or usies in
	w a triange > straight line = 186°
	YTZ = a +b
	XTW = a+b
	Proved .

Turn over ▶

16	By factorising fully, simplify $\frac{x^4 - x^3 - 2x^2}{x^4 - 5x^2 + 4} \leftarrow \begin{bmatrix} x^4 - x^3 - 2x^2 \\ y^2 - 5y + 4 \end{bmatrix}$ [5 marks]
	$\frac{\chi^2 \left[\chi^2 - 3\zeta - 2 \right]}{\left(\chi^2 - 1 \right) \left(3\zeta^2 - 4 \right)}$
	$= 2c^{2} \left[(2c-2)(2c+1) \right]$
	(x+1)(x-1)(x+2)(x-2) = 0:00 = 0 $= 2 = 3$
	$\frac{x^2}{(x-i)(x+2)}$
	Answer

17	Prove that	$2\tan^2\theta + 1 \equiv \frac{1+\sin^2\theta}{1-\sin^2\theta}$	$\frac{2}{2}\frac{\theta}{\theta}$ where si	$\sin^2 \theta \neq 1$	[3 marks]
	tan	$\theta = \frac{\sin \theta}{\cos \theta}$		= <u>Sin</u> 2B 1052B	
	LHS	2 51 n2 0 + 1			
	<u>2</u>	512 0 + Co			
	=	2 sin2 b + cos28)	Sin2 + (c)	
		1 - Sin2b	<u>b</u>		
		+ sin2 b			

END OF QUESTIONS

