

AQA Qualifications

AQA CERTIFICATE FURTHER MATHEMATICS

Paper 2 83602 Mark scheme

83602 June 2014

Version/Stage:V1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

М	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
[<i>a</i> , <i>b</i>]	Accept values between a and b inclusive.

Q	Answer	Mark	Comments
1	x ²	B3	All in appropriate boxes
	4		B1 for each correct box
	5		In the left hand boxes ignore inclusion of $y =$ and/or $f(x) =$

2	Alternative method 1				
	A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied		
	$\frac{1}{2}$ × their 6 × y = 24	M1			
	<i>y</i> = 8	A1ft	Only ft B0 M1		
	their 8 = $12 - 2x$	M1			
	x = 2	A1ft	ft their y		
			SC2 Answer (8, 2) with no valid working		
			SC1 B (0, 12) or $y = 12$ (for B)		
	Alternative method 2				
	A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied		
	<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>) and (area <i>OAB</i> =) $\frac{1}{2}$ × their 6 × 12 or 36 and $\frac{1}{2}$ × 12 × <i>x</i> = their 36 – 24	M1			
	<i>x</i> = 2	A1ft	Only ft B0 M1		
	$y = 12 - 2 \times \text{their } 2$	M1			
	y = 8	A1ft	ft their y SC2 Answer (8, 2) with no valid working SC1 B (0, 12) or $y = 12$ (for B)		

2	Alternative method 3				
	A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied		
	$\frac{1}{2}$ × their 6 × y = 24	M1			
	y = 8	A1ft	Only ft B0 M1		
	<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>) and (area <i>OAB</i> =) $\frac{1}{2}$ × their 6 × 12 or 36 and $\frac{1}{2}$ × 12 × <i>x</i> = their 36 – 24	M1			
	x = 2	A1ft	Only ft B0 with 2^{nd} M1 gained SC2 Answer (8, 2) with no valid working SC1 B (0, 12) or $y = 12$ (for B)		
	Alternative method 4				
	A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied		
	<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>) and (area <i>OAB</i> =) $\frac{1}{2}$ × their 6 × 12 or 36 and $\frac{1}{2}$ × 12 × <i>x</i> = their 36 – 24	M1			
	x = 2	A1ft	Only ft B0 M1		
	$\frac{1}{2}$ × their 6 × y = 24	M1			
	<i>y</i> = 8	A1ft	Only ft B0 with 2^{nd} M1 gained SC2 Answer (8, 2) with no valid working SC1 B (0, 12) or $y = 12$ (for B)		

2	Alternative method 5			
	A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied	
	<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>) and (area <i>OAB</i> =) $\frac{1}{2}$ × their 6 × 12 or 36 and $\frac{24}{\text{their 36}}$ × 12	M1		
	y = 8	A1ft	Only ft B0 M1	
	B (0, 12) or y = 12 (for B) and $(\text{area } OAB =) \frac{1}{2} \times \text{their } 6 \times 12$ or 36 and $\frac{\text{their } 36 - 24}{\text{their } 36} \times \text{their } 6$	M1		
	<i>x</i> = 2	A1ft	Only ft B0 with 2^{nd} M1 gained SC2 Answer (8, 2) with no valid working SC1 <i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)	

3(a)	Valid reason	B1	
	e.g.1 Triangle OTS is isosceles		
	e.g.2 <i>OT</i> = <i>OS</i>		
	e.g.3 OT and OS are radii		

3(b)	Correct equation	M1	ое
	e.g.1 $5x = 2(x + 30)$		
	e.g.2 $2.5x = x + 30$		
	e.g.3 $(180 - 2x) + 120 + 5x = 360$		Brackets not needed in e.g.3
	e.g.4 $x + 30 + x + 30 + 360 - 5x$ = 360		
	Collects terms for their initial equation	M1	ое
	e.g.1 $5x - 2x = 60$		their initial equation must have ≥ 2 terms in x
	e.g.2 $2.5x - x = 30$		Any brackets must be expanded correctly
	e.g.3 $-2x + 5x = 360 - 180 - 120$		
	20	A1	

4(a)	$x^3 - 2x^2$	B2	B1 for x^3
			B1 for $-2x^2$

4(b)	$3x^2$ or $-4x$	M1	At least one term of their $x^3 - 2x^2$ differentiated correctly
	$3(3)^2 - 4(3)$ or $27 - 12$	M1dep	ое
			Substitutes $x = 3$ in their $\frac{dy}{dx}$
			their $\frac{dy}{dx}$ must be an expression in x
			Allow even if their (a) has only one term
	15	A1ft	ft M2 and their (a)
			Only ft if their (a) has at least two terms of different order and all of their terms are differentiated correctly

	4(c)	y - 9 = their $15(x - 3)ory =$ their $15x + c$ and substitutes (3, 9)	M1	oe e.g. $\frac{9-y}{3-x}$ = their 15 their 15 from (b) Allow $y - 9 = \frac{-1}{\text{their 15}} (x - 3)$ or $y = \frac{-1}{\text{their 15}} x + c$ and substitutes (3, 9) for M1 A0 only
	y = 15x - 36	A1ft	ft their 15 from (b)	
				15x - 36 is M1 A0 unless $y = 15x - 36$ seen in working

5	5(4c + 3) and $2(c - 8)or20c + 15$ and $2c - 16$	M1	oe e.g. $10(4c + 3) + 4(c - 8)$ Allow one error in expansion if not showing brackets e.g. Allow $20c + 3$ and $2c - 16$ Equation or fractions not necessary
	Correct equation with no unexpanded brackets	A1	
	e.g.1 $20c + 15 + 2c - 16 = 10$		
	e.g.2 22 <i>c</i> – 1 = 10		
	e.g.3 $\frac{(20c+15)}{10} + \frac{(2c-16)}{10} = 1$		
	e.g.4 $\frac{44c-2}{20} = 1$		
	Eliminates denominators correctly and	M1dep	dep on first M1
	collects terms for their equation e.g.1 $20c + 2c = 10 - 15 + 16$ e.g.2 $22c = 11$		Do not award this mark if the denominator has been eliminated incorrectly at any time in the working
	0.9.2 220 11		Allow one sign error when collecting terms
	$\frac{1}{2}$ or $\frac{11}{22}$	A1ft	ое
	2 22		Only ft from M1 A0 M1 with a maximum of one error in expansions and collecting terms
			SC2 Answer $\frac{15}{22}$ oe

6	(radius =) √289 or 17	B1	
	or		
	(radius =) $\sqrt{121}$ or 11		
	$(\frac{1}{4} \times) 2 \times \pi \times$ their 17 or 34π or $\frac{17\pi}{2}$	M1	oe their 17 can be 289
	or [106.76, 107] or [26.69, 26.71] or		their 11 can be 121
	$(\frac{1}{4} \times) 2 \times \pi \times$ their 11 or 22π or $\frac{11\pi}{2}$		
	or [69.08, 69.124] or [17.27, 17.3]		
	their 17 – their 11 or 6	M1	their 17 can be 289
			their 11 can be 121
			May be implied by 12 seen in next method mark
	$\frac{1}{2}$ x 2 x π x their 17 +	M1	their 17 can be 289
	4		their 11 can be 121
	$\frac{1}{4}$ × 2 × π × their 11 +		
	2 × their 6		
	$14\pi + 12$ or [55.96, 56(.0)]	A1	SC2 42π or [131.88, 132]
			
7(a)			<u> </u>

7(a)			B1	$\sqrt{x^{14}}$	or	$(x^{14})^{\frac{1}{2}}$	or	$\sqrt{x^{5+9}}$
	x ⁷	B2	or	$(x^{5+9})^{\frac{1}{2}}$	or	$x^{\frac{14}{2}}$	or	$x^{\frac{5+9}{2}}$
			or	$x^{\frac{5}{2}} \times x^{\frac{9}{2}}$	or	$x^{2.5} \times x$	c ^{4.5}	

7(b)	0.2 or $\frac{1}{5}$ or 5^{-1}	B2	B1 125 ^{-1/3} or ∛125
			or $\left(\frac{1}{125}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{125}}$
			or $\frac{1}{125^{\frac{1}{3}}}$ or $\frac{1}{\sqrt[3]{125}}$
			or $\left(\frac{1}{5^3}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{5^3}}$
			or $\frac{1^{\frac{1}{3}}}{5}$ or $\frac{\sqrt[3]{1}}{5}$
			or $\frac{1}{y^3} = 125$ or $y^3 = \frac{1}{125}$ or $\frac{1}{y} = 5$
			or $\frac{1}{y} = \sqrt[3]{125}$ or $\frac{1}{y} = 125^{\frac{1}{3}}$

8	$\begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$	B2	B1 2 by 2 matrix with at least two elements correct
	their $\begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix} (x) \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}$	M1	Multiplication can be in either order if their $\begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$ is a 2 by 2 matrix
	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	A1	Must have B2 with M1 seen

9	Alternative method 1					
	angle <i>ACD</i> = 180 – 78 or 102	M1				
	angle <i>ECD</i> = 360 – 115 – their 102 or 143	M1	angle <i>ECD</i> = 143 implies M1 M1			
	(143 + 32 =) 175 and No or 143 + 32 ≠ 180 (and No)	A1	oe SC3 32 + 78 = 110 and No or 32 + 78 ≠ 115 (and No)			
	Alternative method 2					
	angle <i>ACD</i> = 180 – 78 or 102	M1				
	(Assumes <i>CD</i> is parallel to <i>EF</i>) angle $DCE = 180 - 32$ or 148	M1				
	(102 + 148 + 115 =) 365 and No or 102 + 148 + 115 ≠ 360 (and No)	A1	oe SC3 32 + 78 = 110 and No or 32 + 78 ≠ 115 (and No)			
	Alternative method 3					
	Extends <i>DC</i> to <i>X</i> angle <i>XCA</i> = 78	M1	X may be a different letter or not labelled			
	angle <i>XCE</i> = 115 – their 78 or 37	M1	angle <i>XCE</i> = 37 implies M1 M1			
	37 and No	A1	oe SC3 32 + 78 = 110 and No or 32 + 78 ≠ 115 (and No)			
	Alternative method 4					
	Extends DC to X angle $XCA = 78$	M1	X may be a different letter or not labelled			
	(Assumes <i>CD</i> is parallel to <i>EF</i>) angle <i>XCE</i> = 32	M1				
	(32 + 78 =) 110 and No or 32 + 78 ≠ 115 (and No)	A1	oe SC3 32 + 78 = 110 and No or 32 + 78 ≠ 115 (and No)			

9	Alternative method 5				
	Extends AC to meet EF at Y angle ECY = 180 – 115 or 65	M1	<i>Y</i> may be a different letter or not labelled		
	angle <i>EYC</i> = 180 – their 65 – 32 or 83	M1	angle <i>EYC</i> = 83 implies M1 M1		
	83 and No	A1	oe SC3 32 + 78 = 110 and No or 32 + 78 ≠ 115 (and No)		
	Alternative method 6				
	Extends AC to meet EF at Y angle ECY = 180 – 115 or 65	M1	Y may be a different letter or not labelled		
	(Assumes <i>AB</i> is parallel <i>EF</i>) angle <i>EYC</i> = 78	M1			
	(32 + 78 + 65 =) 175 and No or 32 + 78 + 65 ≠ 180 (and No)	A1	oe SC3 32 + 78 = 110 and No or 32 + 78 ≠ 115 (and No)		
	Alternative method 7				
	Draws a line from X on AB to Y on EF passing through C with right angles marked at AXC and CYE (Assumes CD is parallel to EF) angle $ACX = 180 - 90 - 78$ or 12	M1	X and Y may be different letters or not labelled		
	angle ECY = 180 – 90 – 32 or 58	M1			
	(12 + 115 + 58 =) 185 and No or 12 + 115 + 58 ≠ 180 (and No)	A1	oe SC3 32 + 78 = 110 and No or 32 + 78 ≠ 115 (and No)		

$\begin{pmatrix} -1 & 0 \end{pmatrix}$	B2	B1 Rotation 180° (about/centre <i>O</i>)
$\begin{pmatrix} 0 & -1 \end{pmatrix}$		or
		indication that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 \\ 0 \end{pmatrix}$
		or
		indication that $\begin{pmatrix} 0\\1 \end{pmatrix} \rightarrow \begin{pmatrix} 0\\-1 \end{pmatrix}$
		or
		$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} (\mathbf{x}) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
		or
		$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} (\mathbf{x}) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} $
		or
		reflection in $y = -x$ and $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ B2

			-
10(b)	Correct square (vertices O , A " (-3, 0) B" (-3, -3) and C " (0, -3)) with correct labelling	B3	B2 Correct square with incorrect or no labelling or
			correct points plotted with correct labelling
			B1 3 by 3 square in wrong position (ignore labelling)
			or
			correct points plotted with incorrect or no labelling
			or
			enlargement scale factor -3 (centre O)
			or
			$ \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \end{pmatrix} $ or
			$ \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \end{pmatrix} $ or
			$ \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \end{pmatrix} $

11(a)	$\frac{4c^{5}}{9d^{3}} \text{ or } \frac{4c^{5}d^{-3}}{9} \text{ or }$ $\frac{0.4c^{5}}{d^{3}} \text{ or } 0.4c^{5}d^{3}$	B3 B2 Any two of these three components • numerator having c^5 (no c in denominator) • denominator having d^3 (no d in numerator) or numerator having d^{-3} (no d in denominator) • number $\frac{4}{9}$ or 0.4
		B1 Any one of these three components • numerator having c^5 (no c in denominator) • denominator having d^3 (no d in numerator) or numerator having d^{-3} (no d in denominator) • number $\frac{4}{9}$ or $0.\dot{4}$ or $\frac{40c^7d^3}{90d^6c^2}$ or $\frac{20c^7d^3}{45d^6c^2}$ or $\frac{8c^7d^3}{18d^6c^2}$ or $\frac{1.\dot{3}c^7d^3}{3d^6c^2}$ or $\frac{\frac{4}{3}c^7d^3}{3d^6c^2}$ SC1 $\frac{9d^3}{4c^5}$ or $\frac{2.25d^3}{c^5}$
		Always award SC1 if this is their final answer even if $\frac{4c^5}{9d^3}$ seen in working

11(b)	$(m + 1)(m - 4)$ or $m^2 - 3m - 4$ seen as a common denominator	B1	oe
	5(m-4) + 6(m+1)	M1	Allow one error in expansion if not showing brackets e.g. Allow $5m - 20 + m + 6$
	$\frac{5m-20+6m+6}{\text{their common denominator}}$ or $\frac{5m-20}{\text{their common denominator}} + \frac{6m+6}{\text{their common denominator}}$	M1	Allow one error in expansion of numerator(s) their common denominator must be a quadratic
	$\frac{11m-14}{(m+1)(m-4)}$ or $\frac{11m-14}{m^2-3m-4}$	A1	

12	Alternative method 1		
	$x^{2} + (2x)^{2} = 20$ or $\sqrt{20 - x^{2}} = 2x$	M1	oe Condone absence of brackets
	$5x^2 = 20$ or $5x^2 - 20 (= 0)$	M1	oe e.g $x^2 = 4$
			Collects terms for their quadratic to $ax^2 = b$ or $ax^2 - b$ (= 0) <i>a</i> and <i>b</i> both non-zero This mark implies the first M1
	$\sqrt{20}$ or $x = \sqrt{4}$ or	M1	Correct attempt to solve their quadratic
	$\sqrt{\frac{1}{1000000000000000000000000000000000$		oe e.g. $(x + 2)(x - 2)$ (= 0)
	5(x+2)(x-2) (= 0)		If using formula must substitute correctly
			If using completing the square must correctly obtain
			$(px + q)^2 = r$ or $(px + q)^2 - r (= 0)$
			p, q and r non-zero
	x = 2 and $x = -2$	A1	Allow $x = \pm 2$
	or		
	x = 2 and $y = 4$		
	or		
	x = -2 and $y = -4$		
	D (2, 4) and E (-2, -4)	A1	Correct letter must be linked to correct point
			SC2 Both points correct by T & I
			SC1 One point correct by T & I

12	Alternative method 2		
	$\left(\frac{y}{2}\right)^2 + y^2 = 20$ or $\sqrt{20 - y^2} = \frac{y}{2}$	M1	oe Condone absence of brackets
	$5y^2 = 80 \text{ or } \frac{5}{4}y^2 = 20 \text{ or}$ $5y^2 - 80 = 0$	M1	oe e.g $y^2 = 16$ Collects terms for their quadratic to $ay^2 = b$ or $ay^2 - b$ (= 0) a and b both non-zero This mark implies the first M1
	$\sqrt{\frac{80}{\text{their 5}}}$ or $y = \sqrt{16}$ or 5(y + 4)(y - 4) (= 0)	M1	Correct attempt to solve their quadratic oe e.g. $(y + 4)(y - 4)$ (= 0) If using formula must substitute correctly If using completing the square must correctly obtain $(py + q)^2 = r$ or $(py + q)^2 - r$ (= 0) p, q and r non-zero
	y = 4 and $y = -4ory = 4$ and $x = 2ory = -4$ and $x = -2$	A1	Allow $y = \pm 4$
	D (2, 4) and E (-2, -4)	A1	Correct letter must be linked to correct point SC2 Both points correct by T & I SC1 One point correct by T & I

13(a)	С	B1		
13(b)	D	B1		
13(c)	Α	B1		

14	x(5-3w) = 2w + 1	M1	
	5x - 3xw = 2w + 1	M1dep	oe e.g. $5x - 3xw - 2w = 1$
	or		Expands brackets correctly
	$5 - 3w = \frac{2w}{1} + \frac{1}{1}$		or
			divides each term by <i>x</i>
	5x - 1 = 2w + 3xw	M1dep	oe e.g. $-3xw - 2w = 1 - 5x$
	or 1 2m		Collects terms in w (must have ≥ 2 terms containing w)
	$5 - \frac{1}{x} = \frac{2w}{x} + 3w$		Allow one sign error only
			dep on first M1 only
	$\frac{5x-1}{2+3x} = w$	A1	oe e.g. $w = \frac{1-5x}{-3x-2}$
			Must have $= w$ or $w =$
		1	T
15(a)	29 and 23 identified	B2	B1 $(n+9)(n+3)$ or 667 or 29 or 23

15(b)	Alternative method 1				
	$(n-3)^2$	M1	Allow $(n-3)(n-3)$ for $(n-3)^2$		
	$(n-3)^2 - 9 + 14$	A1	Allow $(n-3)(n-3)$ for $(n-3)^2$		
	or $(n-3)^2 + 5$				
	$(n-3)^2 \ge 0$ then adding 5 so always positive or States minimum value is 5 or States (3, 5) is minimum point	A1ft	oe Allow $(n-3)(n-3)$ for $(n-3)^2$ ft M1 A0 Must see M1 and attempt $(n-3)^2 + k$ ft $(n-3)^2 + k$ where $k > 0$ SC2 States minimum value is 5 or States (3, 5) is minimum point		
	Alternative method 2				
	Quadratic curve sketched in first	M1	Labelling on axes not required		
	quadrant with minimum point above the <i>x</i> -axis				
	(discriminant =) -20	A1			
	States no (real) roots	A1ft	oe Allow roots → solutions ft M1 A0 Must see M1 and attempt a discriminant ft discriminant < 0		
			SC2 States minimum value is 5 or States (3, 5) is minimum point		

15(b)	Alternative method 3		
	2 <i>n</i> – 6 = 0	M1	oe equation
			e.g. $2n = 6$ or $n = 3$
	(second derivative =) 2	A1	
	States minimum value is 5	A1ft	ое
	or		ft M1 A0
	States (3, 5) is minimum point		Must see M1 and attempt a second derivative
			ft (second derivative) > 0
			SC2 States minimum value is 5
			or
			States (3, 5) is minimum point

16(a)	a – 2	B1	
-------	-------	----	--

16(b)	Alternative method 1		
	C(0, 4) or $y = 4$ (for C)	B1	May be on diagram
	$\frac{\text{their } 4-0}{0-2} \text{or} -2$	M1	gradient BC
	or		or
	$\frac{(a-2)^2-0}{a-2}$ or $a-2$		gradient AB
	$\frac{\text{their } 4-0}{0-2} \text{or} -2$	M1dep	gradient BC
	and		or
	$\frac{(a-2)^2-0}{a-2}$ or $a-2$		gradient AB
	their $a - 2 = \frac{-1}{\text{their} - 2}$	M1dep	
	$2\frac{1}{2}$	A1	oe
	Alternative method 2		
	C(0, 4) or $y = 4$ (for C)	B1	May be on diagram
	$\frac{\text{their } 4-0}{0-2} \text{or} -2$	M1	gradient BC
	$y = -\frac{1}{\text{their} - 2} (x - 2)$	M1dep	Equation AB
	or $y = \frac{1}{2}(x-2)$ or $y = \frac{1}{2}x-1$		
	their $\frac{1}{2}(x-2) = (x-2)^2$	M1dep	oe e.g. $\frac{1}{2}x - 1 = x^2 - 4x + 4$
	$2\frac{1}{2}$	A1	oe

16b	Alternative method 3		
	C(0, 4) or $y = 4$ (for C)	B1	May be on diagram
	$a^{2} + ((a-2)^{2} - \text{their 4})^{2}$	M1	AC^2
	or		or
	$(a-2)^2 + ((a-2)^2)^2$		AB^2
			oe
	$a^{2} + ((a-2)^{2} - \text{their 4})^{2} =$	M1dep	$AC^2 = AB^2 + BC^2$
	$(a-2)^2 + ((a-2)^2)^2 + 2^2 + \text{their } 4^2$		oe e.g. $AC^2 - AB^2 = BC^2$
			Only ft their 4
	their $8a^2 - 36a + 40 (= 0)$	M1dep	ое
			their quadratic $pa^2 + qa + r$ (= 0)
			p, q and r all non-zero
	$2\frac{1}{2}$	A1	oe
	Alternative method 4	1	
	C(0, 4) or $y = 4$ (for C)	B1	May be on diagram
	$\tan OBC = \frac{\text{their 4}}{2}$	M1	ое
	angle ABD =	M1dep	ое
	$180 - 90 - \text{their tan}^{-1} \frac{\text{their 4}}{2}$		D on the <i>x</i> -axis such that angle $BDA = 90^{\circ}$
	tan their angle $ABD = \frac{(a-2)^2}{a-2}$	M1dep	00
	$2\frac{1}{2}$	A1	oe

17(a) $3d(4c^2 - 3d)$ B2 B1 $d(12c^2 - 9d)$ or $3(4c^2d - 3d^2)$

17(b)	Alternative method 1				
	$(w + 4)^2$ as a factor	M1	Allow $(w + 4) (w + 4)$		
	$(w+4)^2(w+4-(w+1))$	M1dep	Allow $(w + 4) (w + 4)$ for $(w + 4)^2$		
	or				
	$(w+4)^2(w+4-w+1)$				
	$(w + 4)^2(w + 4 - w - 1)$				
	$3(w+4)^2$	A1	Allow $3(w + 4)(w + 4)$		
	Alternative method 2				
	$(w + 4)[(w + 4)^{2} - (w + 4)(w + 1)]$	M1			
	(w + 4)(aw + b)	M1dep	<i>a</i> and <i>b</i> both non-zero		
	$3(w+4)^2$	A1	Allow $3(w + 4)(w + 4)$		
	Alternative method 3				
	$w^3 + 12w^2 + 48w + 64$	M1	Must collect terms		
	or				
	$w^3 + 9w^2 + 24w + 16$				
	$Or = 10^{3} Ou^{2} Ou^{2} Ou^{4} Ou$				
	-w - 9w - 24w - 10				
	$-w^3 + 9w^2 + 24w + 16$				
	or				
	$3w^2 + 24w + 48$				
	or				
	$3(w^2 + 8w + 16)$				
	(3w + 12)(w + 4)	M1dep	Correctly factorises their three term quadratic		
	$3(w + 4)^2$	A1	Accept $3(w + 4)(w + 4)$		

18	Alternative method 1		
	$\sqrt{14^2+8^2}$ or $\sqrt{260}$	M1	AC
	or 2√65 or [16.1, 16.125]		
	$\tan(x) = \frac{7}{\text{their } AC}$	M1dep	ое
	[23.4667, 23.5]	A1	
	Alternative method 2		
	$\sqrt{14^2+8^2+7^2}$ or $\sqrt{309}$	M1	EC
	or [17.578, 17.6]		May be seen in stages e.g. Work out AC with correct method then work out their AC^2 + 7 ² then square roots
			Condone use of $2\sqrt{65}^2$ for AC^2
	$\sin(x) = \frac{7}{\text{their } EC} (\times \sin 90)$	M1dep	$\cos (x) = \frac{8^2 + 14^2 + \text{their } EC^2 - 7^2}{2 \times \text{their } \sqrt{8^2 + 14^2} \times \text{their } EC}$
	cos (x) = $\frac{\sqrt{8^2 + 14^2}}{\text{their } EC}$		Condone use of $2\sqrt{65}^2$ for AC^2
	[23.4667, 23.5]	A1	

19(a)	$2\pi r(r+5)$ seen	M1	oe e.g. $2 \times \pi \times r(r+5)$
	$\frac{9\pi r^2}{2}$	M1	oe e.g. $\pi \times r \times \frac{9r}{2}$
	$\pi r^2 + 2\pi r^2 + 10\pi r + \frac{9\pi r^2}{2}$ or	A1	Correct unsimplified expression with brackets $2\pi r(r + 5)$ expanded
	$\frac{2\pi r^2 + 4\pi r^2 + 20\pi r + 9\pi r^2}{2} \text{or}$		May still contain multiplication signs
	$3\pi r^2 + 10\pi r + \frac{9\pi r^2}{2}$ or		
	$\frac{6\pi r^2+20\pi r+9\pi r^2}{2}$		
	$\frac{15\pi r^2}{2} + 10\pi r = \frac{5\pi r}{2} (3r + 4)$	A1	Must see M2 A1
	or		
	$\frac{15\pi r^2 + 20\pi r}{2} = \frac{5\pi r}{2} (3r + 4)$		

$\begin{array}{ c c c c c } \hline & \frac{5\pi r}{2}(3r+4)=1200\pi & M1 & \text{oe} & \\ \hline & \text{Allow } 1200\pi \rightarrow 1200 \\ \hline & \text{Correct equation or 3 term expression} & \text{M1} & \text{oe} & \\ \hline & \text{Allow } 1200\pi \rightarrow 1200 \\ \hline & \text{e.g. 1} & 3r^2 + 4r - 480 (= 0) & \\ \text{e.g. 2} & 15r^2 + 20r = 2400 & \\ \text{e.g. 3} & \frac{15\pi}{2}r^2 + 10\pi r = 1200\pi & & \\ \hline & \text{Attempt to factorise their 3 term} \\ \text{quadratic} & \\ \text{e.g. for } 3r^2 + 4r - 480 & \\ \text{(3r + a)}(r + b) & \\ \text{where } ab = \pm 480 \text{ or } 3b + a = \pm 4 & \\ \text{or} & \\ \hline & \text{Attempt to substitute in the formula for} \\ \text{their 3 term quadratic} (allow one sign \\ \text{error}) & \\ \text{e.g. for } 3r^2 + 4r - 480 & \\ \hline & \frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3} & \\ \hline & \frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3} & \\ \hline & \text{Correct substitution in formula for} \\ \text{their 3 term quadratic} & \\ \text{e.g. for } 3r^2 + 4r - 480 (= 0) & \\ \text{(3r + 40)}(r - 12) & (= 0) & \\ \text{or} & \\ \hline & \text{Correct substitution in formula for} \\ \text{their 3 term quadratic} & \\ \text{e.g. for } 3r^2 + 4r - 480 (= 0) & \\ \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \text{oe} & \\ \hline & \text{Correct substitution in formula for} \\ \text{their 3 term quadratic} & \\ \text{e.g. for } 3r^2 + 4r - 480 (= 0) & \\ \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] & \\ \hline & \text{oe} & \\ \hline & \text{(3) } [(r$				
$ \begin{array}{ c c c c } \hline Correct equation or 3 term expression with no unexpanded brackets e.g. 1 3r^2 + 4r - 480 (= 0) e.g. 2 15r^2 + 20r = 2400 e.g. 3 \frac{15\pi}{2}r^2 + 10\pi r = 1200\pi \\ \hline e.g. 3 \frac{15\pi}{2}r^2 + 10\pi r = 1200\pi \\ \hline Attempt to factorise their 3 term quadratic (allow one sign error) e.g. for 3r^2 + 4r - 480 (= 0) e.g. 3 r^2 + 4r - 480 (= 0) e.g. for 3r^2 + 4r - 480 (3) [(r + \frac{2}{3})^2 \dots]] \\ \hline Attempt to substitute in the formula for their 3 term quadratic (allow one sign error) e.g. for 3r^2 + 4r - 480 or \frac{4\pm\sqrt{4^2-4\times3\times-480}}{2\times3} or \frac{4\pm\sqrt{4^2-4\times3\times-480}}{2\times3} (1 sign error) \\ \hline Correctly factorises their 3 term quadratic (allow one sign error) e.g. for 3r^2 + 4r - 480 (1 sign error) \frac{4\pm\sqrt{4^2-4\times3\times-480}}{2\times3} (1 sign error) \\ \hline Correct substitution in formula for their 3 term quadratic e.g. for 3r^2 + 4r - 480 (= 0) (3) [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] oe (3) [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] oe (3) [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] oe (3) [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] or (3) [r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] or (3) [r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] or (3) [r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160] or r + \frac{12}{2\times3} or r + \frac{12}{2} or r + \frac{12}{2}$	19(b)	$\frac{5\pi r}{2}(3r+4) = 1200\pi$	M1	oe Allow 1200 $\pi ightarrow$ 1200
$\begin{array}{ c c c c } \hline e.g.1 & 3r^2 + 4r - 480 (= 0) \\ e.g.2 & 15r^2 + 20r = 2400 \\ e.g.3 & \frac{15\pi}{2}r^2 + 10\pi r = 1200\pi \\ \hline \\ $		Correct equation or 3 term expression with no unexpanded brackets	A1	oe
e.g. 2 $15r^2 + 20r = 2400$ e.g. 3 $\frac{15\pi}{2}r^2 + 10\pi r = 1200\pi$ Attempt to factorise their 3 term quadraticM1depe.g. for $3r^2 + 4r - 480$ or $(3r + a)(r + b)$ where $ab = \pm 480$ or $3b + a = \pm 4$ ororAttempt to substitute in the formula for their 3 term quadratic (allow one sign error)e.g. for $3r^2 + 4r - 480$ $(3) [(r + \frac{2}{3})^2 \dots]$ Correctly factorises their 3 term quadraticA1ft $\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (1 sign error)Correct ly factorises their 3 term quadraticA1fte.g. for $3r^2 + 4r - 480 (= 0)$ $(3r + 40)(r - 12) (= 0)$ orA1ftft M1 A0 M1dep oe Correct substitution in formula for their 3 term quadratice.g. for $3r^2 + 4r - 480 (= 0)$ $(3r + 40)(r - 12) (= 0)$ oror 2×3 12A1Do not award if negative solution also included		e.g.1 $3r^2 + 4r - 480 (= 0)$		
e.g. $3 \frac{15\pi}{2}r^2 + 10\pi r = 1200\pi$ M1depoe Attempt to factorise their 3 term quadratic e.g. for $3r^2 + 4r - 480$ $(3r + a)(r + b)$ M1depoe Attempt to complete the square for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ or Attempt to substitute in the formula for their 3 term quadratic (allow one sign error)M1depoe Attempt to complete the square for their 3 term quadratic (3) $[(r + \frac{2}{3})^2 \dots]$ e.g. for $3r^2 + 4r - 480$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 2×3 or(3) $[(r + \frac{2}{3})^2 \dots]$ Correctly factorises their 3 term quadratic 2×3 A1ftft M1 A0 M1dep oe Correct completion of square for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(3r + 40)(r - 12)$ (= 0) orA1ftft M1 A0 M1dep oe (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160$]Correct substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 2×3 A11Do not award if negative solution also included		e.g.2 $15r^2 + 20r = 2400$		
Attempt to factorise their 3 term quadraticM1depoee.g. for $3r^2 + 4r - 480$ $(3r + a)(r + b)$ where $ab = \pm 480$ or $3b + a = \pm 4$ orM1depoeAttempt to substitute in the formula for their 3 term quadratic (allow one sign error)e.g. for $3r^2 + 4r - 480$ $(3) [(r + \frac{2}{3})^2 \dots](3) [(r + \frac{2}{3})^2 \dots]e.g. for 3r^2 + 4r - 480(3) [(r + \frac{2}{3})^2 \dots]ft M1 A0 M1depoe(3) [(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]Correctly factorises their 3 termquadratice.g. for 3r^2 + 4r - 480 (= 0)(3r + 40)(r - 12) (= 0)orA1ftft M1 A0 M1depoeCorrect substitution in formula fortheir 3 term quadratice.g. for 3r^2 + 4r - 480 (= 0)(3r + 40)(r - 12) (= 0)orA1ftft M1 A0 M1depoeCorrect substitution in formula fortheir 3 term quadratice.g. for 3r^2 + 4r - 480 (= 0)(3r + 40)(r - 12) (= 0)orA1ftft M1 A0 M1depoe12A1Do not award if negative solution alsoincluded$		e.g.3 $\frac{15\pi}{2}r^2 + 10\pi r = 1200\pi$		
$\begin{array}{ c c c c } e.g. \ for \ 3r^2 + 4r - 480 \\ (3r + a)(r + b) \\ where \ ab = \pm 480 \ or \ 3b + a = \pm 4 \\ or \\ Attempt to substitute in the formula for their 3 term quadratic (allow one sign error) \\ e.g. \ for \ 3r^2 + 4r - 480 \\ \hline \frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3} \ or \\ \hline \frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3} \ (1 \ sign error) \\ \hline \hline \\ \hline $		Attempt to factorise their 3 term quadratic	M1dep	oe Attempt to complete the square for their
$(3r + a)(r + b)$ where $ab = \pm 480$ or $3b + a = \pm 4$ or Attempt to substitute in the formula for their 3 term quadratic (allow one sign error) e.g. for $3r^2 + 4r - 480$ $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ or $\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (1 sign error) Correctly factorises their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ (3r + 40)(r - 12) (= 0) or Correct substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ or $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ 12 A1 bo not award if negative solution also included		e.g. for $3r^2 + 4r - 480$		3 term quadratic
where $ab = \pm 480$ or $3b + a = \pm 4$ or(3) $[(r + \frac{2}{3})^2 \dots]$ Attempt to substitute in the formula for their 3 term quadratic (allow one sign error)(3) $[(r + \frac{2}{3})^2 \dots]$ e.g. for $3r^2 + 4r - 480$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 2×3 or $\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ or $4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 2×3 (1 sign error)Correctly factorises their 3 term quadraticA1ftft M1 A0 M1dep oee.g. for $3r^2 + 4r - 480$ (= 0) $(3r + 40)(r - 12)$ (= 0) orA1ftft M1 A0 M1dep oeCorrect substitution in formula for their 3 term quadratice.g. for $3r^2 + 4r - 480$ (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ e.g. for $3r^2 + 4r - 480$ (= 0) $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oe12A1Do not award if negative solution also included		(3r + a)(r + b)		e.g. for $3r^2 + 4r - 480$
or3Attempt to substitute in the formula for their 3 term quadratic (allow one sign error)e.g. for $3r^2 + 4r - 480$ $-\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ or $\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (1 sign error)Correctly factorises their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(3r + 40)(r - 12)$ (= 0) orA1ftft M1 A0 M1dep oe Correct completion of square for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(3r + 40)(r - 12)$ (= 0) or(3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oeCorrect substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(-4 \pm \sqrt{4^2 - 4 \times 3 \times -480})$ (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oe12A1Do not award if negative solution also included		where $ab = \pm 480$ or $3b + a = \pm 4$		(3) $[(r + \frac{2}{2})^2 \dots]$
Attempt to substitute in the formula for their 3 term quadratic (allow one sign error)e.g. for $3r^2 + 4r - 480$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 2×3 or $\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (1 sign error)Correctly factorises their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(3r + 40)(r - 12)$ (= 0)orcorrect substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(3r + 40)(r - 12)$ (= 0)or12A1Do not award if negative solution also included		or		3
e.g. for $3r^2 + 4r - 480$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 2×3 or $\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (1 sign error)Correctly factorises their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $(3r + 40)(r - 12)$ (= 0) ororCorrect substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ 12A1Do not award if negative solution also included		Attempt to substitute in the formula for their 3 term quadratic (allow one sign error)		
$\frac{-4\pm\sqrt{4^2-4\times3\times-480}}{2\times3} \text{ or } \frac{4\pm\sqrt{4^2-4\times3\times-480}}{2\times3} (1 \text{ sign error}) = 4 \text{ ft } M1 \text{ A0 M1dep} (1 \text{ sign error}) = 1 \text{ or } \frac{4\pm\sqrt{4^2-4\times3\times-480}}{2\times3} (1 \text{ sign error}) = 1 \text{ or } \frac{1}{2\times3} (1 \text{ sign error}) = 1 \text{ or } 1$		e.g. for $3r^2 + 4r - 480$		
$\frac{4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3} (1 \text{ sign error})$ Correctly factorises their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ (3r + 40)(r - 12) (= 0) or Correct substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ A1 Do not award if negative solution also included		$\frac{-4\pm\sqrt{4^2-4\times3\times-480}}{2\times3} \text{or} $		
Correctly factorises their 3 term quadraticA1ftft M1 A0 M1dep oee.g. for $3r^2 + 4r - 480 (= 0)$ $(3r + 40)(r - 12) (= 0)$ or(ar + 40)(r - 12) (= 0)(ar + 40)(r - 12) (= 0)or(ar + 40)(r - 12) (= 0)(ar + 4n - 480)or(ar + 2n - 480)(ar + 2n - 480)(b) $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (b) $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (c) $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ 12A1Do not award if negative solution also included		$\frac{4\pm\sqrt{4^2-4\times3\times-480}}{2\times3}$ (1 sign error)		
quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ $(3r + 40)(r - 12) (= 0)$ or Correct substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 12oe Correct completion of square for their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 12oe Correct substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ oe Correct substitution in formula for 		Correctly factorises their 3 term	A1ft	ft M1 A0 M1dep
e.g. for $3r^2 + 4r - 480 (= 0)$ Correct completion of square for their 3 term quadratic e.g. for $3r^2 + 4r - 480$ (= 0) $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oe12A1Do not award if negative solution also included		quadratic $(100, 100)$		oe
$\frac{(37 + 40)(7 - 12)^{-}(-0)}{(-12)^{-}(-0)}$ or $\frac{(37 + 40)(7 - 12)^{-}(-0)}{(-12)^{-}(-0)^$		e.g. 101 $3r + 4r - 480 (= 0)$		Correct completion of square for their 3 term quadratic
Correct substitution in formula for their 3 term quadratic e.g. for $3r^2 + 4r - 480 (= 0)$ $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}}{2 \times 3}$ (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oe (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oe (3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oe		(0, +40)(r - 12) (-0)		e a for $3r^2 + 4r - 480$
e.g. for $3r^2 + 4r - 480 (= 0)$ $-4 \pm \sqrt{4^2 - 4 \times 3 \times -480}$ 2×3 12A1Do not award if negative solution also included		Correct substitution in formula for their 3 term quadratic		(3) $[(r + \frac{2}{3})^2 - (\frac{2}{3})^2 - 160]$ oe
$\begin{array}{ c c c }\hline -4 \pm \sqrt{4^2 - 4 \times 3 \times -480} \\\hline 2 \times 3 \\\hline 12 \\\hline 12 \\\hline A1 \\\hline Do not award if negative solution also included \\\hline \end{array}$		e.g. for $3r^2 + 4r - 480 (= 0)$		
2×3 12 A1 Do not award if negative solution also included		$-4\pm\sqrt{4^2-4 imes 3 imes -480}$		
12 A1 Do not award if negative solution also included		2×3		
		12	A1	Do not award if negative solution also included

20	$(9x - y)^2 = (6x)^2 + (x + y)^2$	N/1	00
20	$(\mathbf{o}x - y) = (\mathbf{o}x) + (x + y)^{-1}$	IVI I	Allow $(8x - y) (8x - y)$ and $(x + y) (x + y)$ Condone $6x^2$
	Expands $(8x - y)^2$ to 4 terms with 3 correct from $64x^2 - 8xy - 8xy + y^2$	M1	oe If going straight to 3 terms must be $64x^2 - 16xy + ky^2$ ($k \neq 0$) or $ax^2 - 16xy + y^2$ ($a \neq 0$)
	Expands $(x + y)^2$ to 4 terms with 3 correct from $x^2 + xy + xy + y^2$	M1	oe If going straight to 3 terms must be $x^{2} + 2xy + ay^{2}$ ($a \neq 0$) or $bx^{2} + 2xy + y^{2}$ ($b \neq 0$)
	$27x^{2} - 18xy$ (= 0) or $27x^{2} = 18xy$ or better e.g.1 $9x^{2} - 6xy$ (= 0) e.g.2 $3x^{2} = 2xy$	A1	64x - 16y = 36x + x + 2y or equivalent linear equation e.g.1 $64x - 16y - 36x = x + 2y$ e.g.2 $64x - 16y - x - 2y = 36x$
	Any correct factorisation of their $px^2 + qxy$ or correct division of their $px^2 = qxy$ by a multiple of x (p and q non zero) e.g.1 $9x (3x - 2y) (= 0)$ e.g.2 $3x (9x - 6y) (= 0)$ e.g.3 $27x = 18y$ e.g.4 $9x = 6y$	M1	Correct collection and correct simplification of terms for their linear equation in x and y e.g. $27x = 18y$ To gain this mark there must have been some expansion of brackets seen
	$3x = 2y \text{or} \frac{x}{y} = \frac{2}{3} \text{or} \frac{y}{x} = \frac{3}{2}$ $\text{or} x = \frac{2}{3}y \text{or} y = \frac{3}{2}x \text{or}$ $\frac{x}{2} = \frac{y}{3} \text{or} \frac{2}{x} = \frac{3}{y}$	A1	Must see M1 M1 M1 A1 Do not allow if a contradictory statement is also seen

21	Alternative method 1			
	$\sin(x) = \sqrt{\frac{1}{16}}$ or $\sin(x) = \frac{1}{4}$	M1		
	[14.4775, 14.5]	A1	Do not award if another solution in range $0 \le x < 90$ is given	
	$\sin x = -\sqrt{\frac{1}{16}} \text{or} \sin x = -\frac{1}{4}$ or -[14,4775, 14,5]	M1		
	or 180 + their [14.4775, 14.5]		their [14.4775, 14.5] must be a positive acute angle	
	[194.4775, 194.5]	A1	Do not award if another solution in range $180 \le x \le 270$ is given	
	[165.5, 165.5225]	B1ft	ft 180 – their [14.4775, 14.5] their [14.4775, 14.5] must be a positive acute angle Do not award if another solution in range	

21	Alternative method 2				
	$\cos(x) = \sqrt{1 - \frac{1}{16}}$ or $\cos(x) = \sqrt{\frac{15}{16}}$	M1			
	or $\cos(x) = \frac{\sqrt{15}}{4}$				
	or cos (<i>x</i>) = [0.968, 0.97]				
	[14.4775, 14.5]	A1	Do not award if another solution in range $0 \le x < 90$ is given		
	$\cos(x) = -\sqrt{1 - \frac{1}{16}}$ or	M1			
	$\cos(x) = -\sqrt{\frac{15}{16}}$ or $\cos(x) = -\frac{\sqrt{15}}{4}$				
	or $\cos(x) = -[0.968, 0.97]$				
	or 180 + their [14.4775, 14.5]		their [14.4775, 14.5] must be a positive acute angle		
	[194.4775, 194.5]	A1	Do not award if another solution in range $180 \le x \le 270$ is given		
	[165.5, 165.5225]	B1ft	ft 180 – their [14.4775, 14.5]		
			their [14.4775, 14.5] must be a positive acute angle		
			Do not award if another solution in range $90 \le x < 180$ is given		

22	Alternative method 1				
	Substitutes a value $0 < x < 3$ and obtains a correct expression in k	M1	oe		
	e.g. $x = 2 \rightarrow 2k (2-3)^3$ or $2k (-1)^3$ and				
	substitutes a value $x > 3$ and obtains a correct expression in k				
	e.g. $x = 4 \rightarrow 4k (4-3)^3$ or $4k (1)^3$				
	Obtains correct expressions for both and correctly indicates whether they are positive or negative	M1dep			
	e.g. $-2k$ positive and $4k$ negative				
	Max(imum point)	A1	Must see the working for M1 M1		
	Alternative method 2				
	Correct second derivative with $x = 3$ substituted in leading to 0 i.e. $4kx^3 - 27kx^2 + 54kx - 27k$ and $x = 3 \rightarrow 0$	M1	oe e.g. $3kx(x-3)^2 + k(x-3)^3$ and $x = 3 \rightarrow 0$		
	Correct third derivative with $x = 3$ substituted in leading to 0 and correct fourth derivative with $x = 3$ substituted in leading to < 0 i.e. $12kx^2 - 54kx + 54k$ and $x = 3 \rightarrow 0$ and 24kx - 54k	M1dep			
	and $x = 3 \rightarrow 18k$ negative				
	Max(imum point)	A1	Must see the working for M1 M1		