Centre Number	Candidate Number	
Surname		
Other Names		
Candidate Signature		

Level 2 Certificate in Further Mathematics June 2014

Further Mathematics

8360/2

Level 2

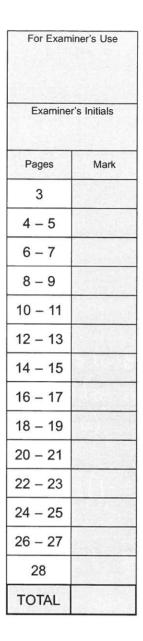
Paper 2 Calculator

Friday 20 June 2014 9.00 am to 11.00 am

For this paper you must have:

- · a calculator
- mathematical instruments.

Time allowed

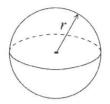

2 hours

Instructions

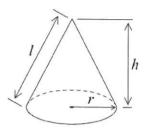
- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- · The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must not be used.



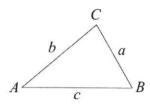
Formulae Sheet


Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere =
$$4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$


In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

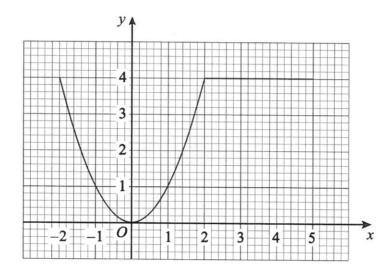
Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$
, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$


Trigonometric Identities

$$\tan\theta \equiv \frac{\sin\theta}{\cos\theta}$$

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

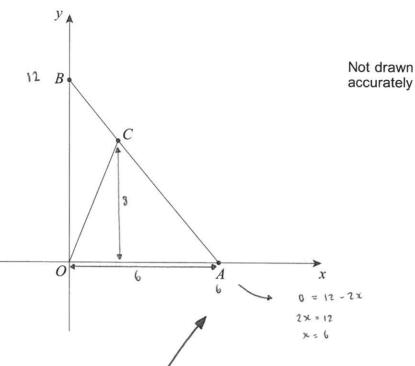
Answer all questions in the spaces provided.

The graph of y = f(x) for the full domain is shown. The graph consists of a quadratic curve and a straight line.

Complete the boxes to describe f(x).

[3 marks]

$$f(x) = \int_{0}^{\infty} x^{2}$$


$$-2 \le x \le 2$$

$$2 < x \le \boxed{5}$$

Turn over for the next question

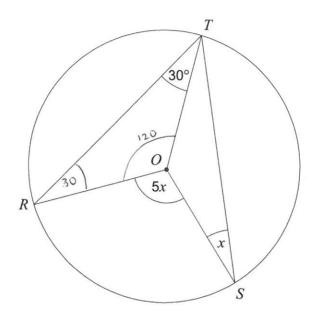
2 The equation of line AB is y = 12 - 2x

The area of triangle OCA is 24 square units.

Work out the coordinates of C.

$$\frac{b \times h}{2} = 24 \longrightarrow \frac{6 \times h}{2} = 24$$

[5 marks]


6h = 48

8 = 12 - 2x

8 + 2x = 122x = 4 x = 2

Answer (...... 3

3 R, S and T are on the circumference of a circle, centre O.

Not drawn accurately

Give a reason why angle OTS = x3 (a)

[1 mark]

triangle TOS is isosceles because OT = OS (radius) therefore base angles are equal OST = OTSx = x as req.

3 (b) Work out the value of x.

[3 marks]

$$TR0 = 30^{\circ}$$
 :. $TOR = 180 - 30 - 30 = 120$

TOS = 180 - x - x = 180 - 2x

angle around the centre: 360 = 120 + 180 - 2x + 5x

360 = 300 + 3x

Answer 20 degrees

Turn over for the next question

 $x^{2}(x-2)$ 4 (a) Expand

[2 marks]

 $x^3 - 2x^2$

 $y = x^2(x - 2)$ 4 (b) A curve has equation

Work out the gradient of the curve at the point (3, 9).

[3 marks] $\frac{dy}{dx} = 3x^2 - 4x$

when x=3: $3(3)^2-4(3)=27-12=15$

Line *L* is the tangent to the curve $y = x^2(x-2)$ at the point (3, 9). 4 (c)

> Work out the equation of L. Give your answer in the form y = mx + c

[2 marks]

 $y - y_1 = m(x - x_1)$ y - 9 = 15(x - 3) y - 9 = 15x - 45 y = 15x - 36

Answer y = 15x - 36

[4 marks]

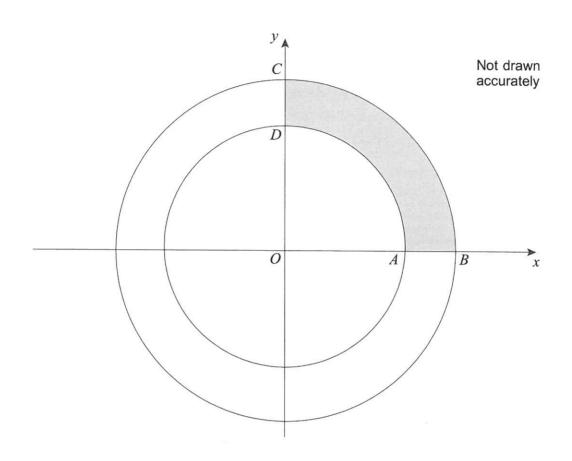
5 Solve
$$\frac{4c+3}{2} + \frac{c-8}{5} = 1$$

$$\frac{5(4c+3)}{10} + \frac{2(c-8)}{10} = 1$$

$$\frac{20c+15+2c-16}{10} = 1$$

$$\frac{22c-1}{10} = 1$$

$$22c = 11$$


$$c = \frac{11}{22}$$

Turn over for the next question

Turn over ▶

6 Two circles, each with centre *O*, are shown. The equations of the circles are

$$x^2 + y^2 = 289$$
 and $x^2 + y^2 = 121$

Work out	the	perimeter	of th	ne shade	ed section	ABCD

work out the perimeter of the shaded section ABCD.

radius $OA = \sqrt{121} = 11$ $OB = \sqrt{289} = 17$ CD and AB = 17 - 11 = 6

 $arc of CB = 77d = 34\pi = 8.5\pi$

arc of DA = πd = 22π = 5.5π

total perimeter = 8.5π + 5.5π + 6 + 6

Answer 55.98 (2 dp)

7 (a) Simplify
$$\sqrt{x^5 \times x^9}$$

Give your answer in the form x^p where p is an integer.

[2 marks]

$$\sqrt{\chi^{14}} = (\chi^{14})^{\frac{1}{2}} = \chi^{7}$$

Answer

7 **(b)** Solve
$$y^{-3} = 125$$

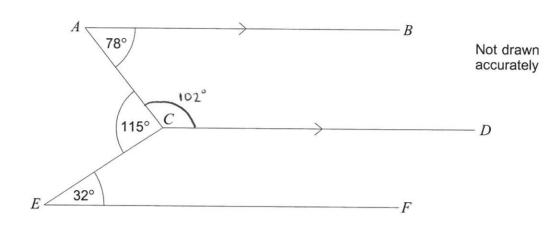
[2 marks]

$$y^{-3} = \frac{1}{y^3}$$
 $\frac{1}{y^3} = 125$
 $1 = 125y^3$
 $\frac{1}{125} = y^3$
 $y = 3\sqrt{\frac{1}{125}}$

$$y = \frac{1}{5}$$

Turn over for the next question

$$\mathbf{M} = \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}$$


Show that $M^3 = I$

[4 marks]

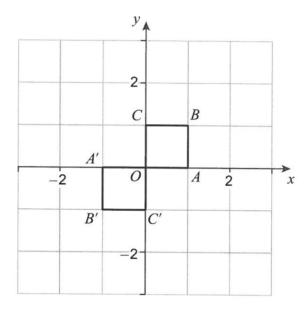
$$\begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} (-2 \times -2) + (-1 \times 3) & (-2 \times -1) + (-1 \times 1) \\ (3 \times -2) + (1 \times 3) & (3 \times -1) + (1 \times 1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
 as required.

AB is parallel to CD.

Is *EF* parallel to *CD*? You **must** show your working.

[3 marks]


Co-interior angles add up to
$$180^{\circ}$$
 :: ACD = 102° (180 - 78 = 102)

Turn over for the next question

10 The unit square OABC has vertices

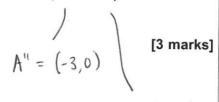
$$O(0, 0)$$
 $A(1, 0)$ $B(1, 1)$ $C(0, 1)$

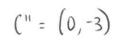
10 (a) OABC is mapped to OA'B'C' under transformation matrix M.

Work out matrix M.

[2 marks]

$$A' = (-1,0)$$


$$C' = (0,-1)$$


$$-1$$


Answer

OABC is mapped to *OA"B"C"* under transformation matrix $\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$ 10 (b)

Draw and label OA''B''C'' on the diagram below.

Turn over for the next question

$$\frac{8c^7}{15d^6} \div \frac{6c^2}{5d^3}$$

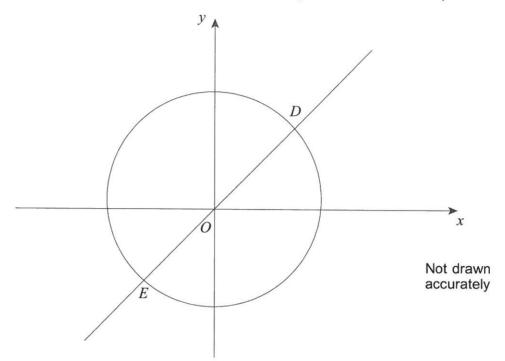
[3 marks]

$$\frac{8c^{\frac{5}{7}}}{15d^{\frac{1}{8}3}} \times \frac{5d^{\frac{3}{7}}}{6c^{\frac{1}{7}}} = \frac{8c^{\frac{5}{7}}}{8d^{\frac{3}{7}}} \times \frac{15}{15d^{\frac{1}{8}3}} = \frac{14c^{\frac{5}{7}}}{9d^{\frac{3}{7}}}$$

Answer
$$\frac{4c^{5}}{9d^{3}}$$

11 (b) Write as a single fraction $\frac{5}{m+1} + \frac{6}{m-4}$

Give your answer in its simplest form.


[4 marks]

$$\frac{5(m-4)+6(m+1)}{(m+1)(m-4)} = \frac{5m-20+6m+6}{(m+1)(m-4)}$$

$$=\frac{11m-14}{(m+1)(m-4)}$$

Answer

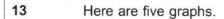
The circle $x^2 + y^2 = 20$ 12 and the line y = 2xintersect at points D and E.

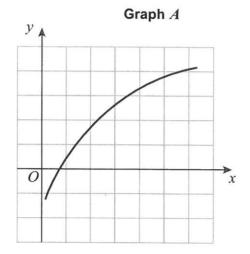
Work out the coordinates of D and E. Do not use trial and improvement. You must show your working.

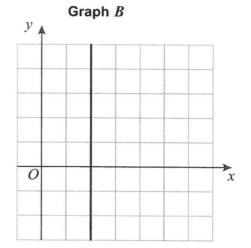
[5 marks]

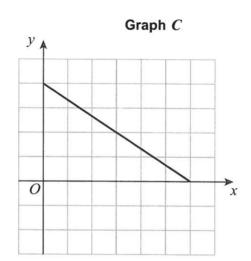
$$\chi^2 + (2\chi)^2 = 20$$

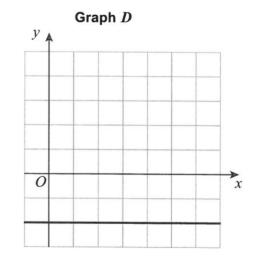
$$x^2 + 4x^2 = 20$$

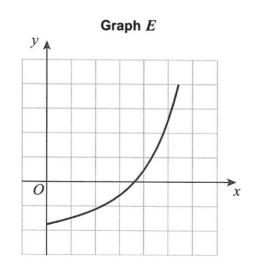

$$5x^2 = 20$$


$$x^2 = 4$$


$$\chi^2 = 4$$


$$x = \pm 2$$


when
$$x = 2$$
 when $x = -2$



	For each of the for Circle your answer	ollowing state er each time.	ments, decide	which graph	is being descr	ibed.
13 (a)	The rate of chang	$\mathbf{g} \mathbf{e}$ of \mathbf{y} with $\mathbf{r} \mathbf{e}$	espect to x is a	ılways negativ	e.	[1 mark
	A	В	\bigcirc	D	E	
13 (b)	The rate of chang	\mathbf{e} of y with \mathbf{r}	espect to x is a	lways zero.		[1 mark]
	A	В	С	D	E	
13 (c)	As x increases, th	e rate of cha	inge of y with r	espect to x de	ecreases.	[1 mark]
	\bigcirc A	В	C	D	E	

Turn over for the next question

14 Rearrange

$$x = \frac{2w + 1}{5 - 3w}$$

 $x = \frac{2w + 1}{5 - 3w}$ to make w the subject.

[4 marks]

$$\alpha(5-3w) = 2w + 1$$

$$5x - 3wx = 2w + 1$$

$$5x = 2w + 3wx + 1$$

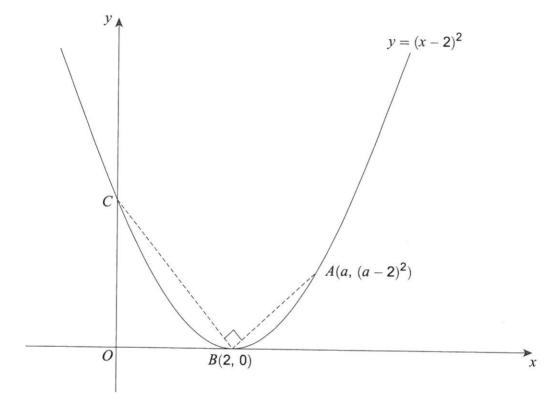
$$5x-1 = 2w + 3wx$$

$$5x-1 = w(2+3x)$$

$$\frac{5x-1}{2+3x} = W$$

$$W = \frac{5x-1}{2+3x}$$

15 (a)	The <i>n</i> th term of a sequence is $n^2 + 12n + 27$	
	By factorising, or otherwise, show that the 20th term can be written as the product two prime numbers.	luct of
	(n+9)(n+3)	marks
	$20\text{th}: (20+9)(120+3) = 29 \times 23$	
	both prime numbers as require	² d
15 (b)	The <i>n</i> th term of a different sequence is $n^2 - 6n + 14$ By completing the square, or otherwise, show that every term is positive.	
	$(n-3)^2-9+14=(n-3)^2+5$	marks]
	$((n-3)^2 = n^2 - 6n + 9)$ $\therefore \text{ always positive}$	(3,5)
	/	


Turn over for the next question

16 (a) Simplify $\frac{(a-a)^2}{a}$

[1 mark]

Answer Q - 2

16 (b) Here is a sketch of the curve $y = (x - 2)^2$

- The curve touches the x-axis at B and intersects the y-axis at C.
- Angle ABC is 90°.
- The curve passes through $A(a, (a-2)^2)$

Work out the value of a.

$$y = (x-2)^2 = x^2 - 4x + 4 \qquad (= (0, 4))$$

$$y = (x-2)^2 = x^2 - 4x + 4 \qquad (= (0, 4))$$

$$y = (x-2)^2 = x^2 - 4x + 4 \qquad (= (0, 4))$$

$$x_1 - x_1 \qquad 0 - 2 \qquad -2$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad AB \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

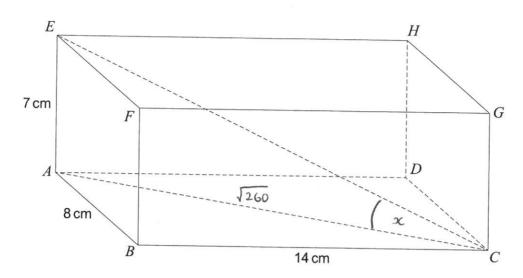
$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

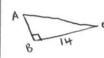
$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$


$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

$$ABC = 90^\circ \qquad ABC \qquad (= (0, 4))$$

17 (a)	Factorise fully	$12c^2d - 9d^2$		
		3d (4c2	-3d	[2 marks]
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		Answer	3d (4c2 - 3	3d)
17 (b)	Factorise fully	$(w+4)^3 - (v$	$(w+4)^2(w+1)$	
	$(W+4)^{2}$	(W+4) -	(w+1)]	[3 marks]
	(W+4)2		W-1]	
	(W+4)	[3]		
	3(r	v+4)²		
			•••••••••••••••••••••••••••••••••••••••	
		Answer	3(w+4)2	
				The second secon


18 ABCDEFGH is a cuboid.

Work out the angle between EC and ABCD.

 $AC^2 = 8^2 + 14^2$

[3 marks]

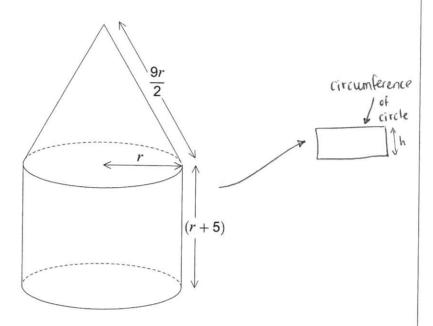
$$AC^2 = 64 + 196 = 260$$

 $AC = \sqrt{260}$

$$AC = \sqrt{260}$$

E.	B-27 31
17	H
	12
	√260

24.36670....


24.4 (1dp)

On this diagram all lengths are given in centimetres.

A cylinder and cone are joined together to make a solid.

The cylinder has radius r and height (r+5)

The cone has radius r and slant height $\frac{9r}{2}$

19 (a) Show that the total surface area of the solid, in cm², is $\frac{5\pi r}{2}(3r+4)$

[4 marks]

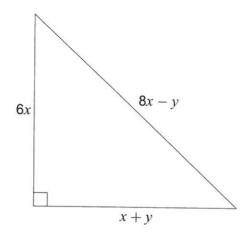
curved surface area of cone = $\pi r l$ = $\pi r \left(\frac{qr}{2}\right) = \frac{q\pi r^2}{2}$

SA of cylinder: rectangle = $\pi d \times h$ = $\pi (2r) \times (r+5)$

 $= 2\pi r (r+5) = 2\pi r^2 + 10\pi r$

circle = Tr2

 $= \pi r^2$


total: $\frac{9\pi r^2}{2} + 2\pi r^2 + 10\pi r + \pi r^2 = \frac{9\pi r^2}{2} + \frac{4\pi r^2}{2} + 10\pi r + \frac{2\pi r^2}{2}$

= $\frac{5\pi r}{2}$ (3r + 4) as required

19 (b)	The total surface area of the solid is $1200\pi\text{cm}^2$	
	Work out the value of r .	
	$2(3r+4) = 1200\pi$	narks
	$\frac{15\pi r^2}{2} + \frac{20\pi r}{2} = 1200\pi$	•••••
	$15\pi r^2 + 20\pi r = 2400\pi$	••••••
	$15r^2 + 20r = 2400$	
	$3r^2 + 4r = 480$	
	$3r^2 + 4r - 480 = 0$	
	a=3 $b=4$ $c=-480$	
	$\Gamma = \frac{-b^{\pm}\sqrt{b^2-4ac}}{2a}$	
	$r = -4 + \sqrt{4^2 - (4x3x - 480)}$	
	2(3)	
	$r = -4 \pm \sqrt{16 - 5760} = -4 \pm \sqrt{5776} = -4 \pm \sqrt{5776}$	176
	6 6	6
	r = -4 + 76 = 12 $r = -4 - 76 = -80$	
	radius co	n't
	Answer $r = 12$ be nex	

Turn over for the next question

The diagram shows a right-angled triangle.

Not drawn accurately

Prove algebraically that

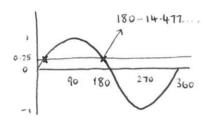
$$x : y = 2 : 3$$

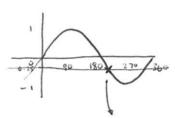
[6 marks]

$a^2 + b^2 = c^2$	
$(6x)^2 + (x+y)^2 = (8x-y)^2$	(x+y)(x+y) = x+ xy+xy+y2
$36x^2 + x^2 + 2xy + y^2 = 64x^2 - 16xy + y^2$	$= x^2 + 2xy + y^2$
$37x^2 + 2xy = 64x^2 - 16xy$	(8x-y)(8x-y) = 64x - 8xy - 8xy + y2
$2xy = 27x^2 - 16xy$	$= 64x^2 - 16xy + y^2/$
$18xy = 27x^{2}$	
18y = 27x	
2y = 3x	
J	
3x = 2y	
x:y=2:3 as	required

$$16 \sin^2 x = 1$$
 for

for
$$0^{\circ} \leqslant x \leqslant 270^{\circ}$$


[5 marks]


$$\sin^2 x = \frac{1}{16}$$

$$Sinx = \sqrt{\frac{1}{16}} = \pm \frac{1}{4}$$

$$Sinx = \frac{1}{4}$$

$$x = 14.477..., 165.527...$$

Same distance from 180

Turn over for the next question

The curve y = f(x) has $\frac{dy}{dx} = kx(x-3)^3$ where k is a **negative** constant.

There is a stationary point at x = 3

Determine the nature of this stationary point. You **must** show your working.

[3 marks]

Try x = 2.9 in dy dx

kumananggan $K \times X \times (2.9-3)^3$

- Ve x + Ve x - Ve = + Ve

Try x = 3.1 in dy dx

 $k \times x \times (3.1-3)^3$

- Ve x + ve x + ve = - ve

END OF QUESTIONS

 $\frac{x}{\text{grad}}$ $\frac{2.9}{3}$ $\frac{3.1}{3.1}$

max

Copyright © 2014 AQA and its licensors. All rights reserved.