

Level 2 Certificate in Further Mathematics June 2013

Paper 2 8360/2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

Q	Answer	Mark	Comments
1	$r=5$ or $r^{2}=25$ or $r=\sqrt{25}$ or $\quad d=10$	B1	May be seen on diagram
	($2 \times$ their $r)^{2}-\pi \times$ their r^{2}	M1	
	[21.45, 21.5] or $100-25 \pi$	A1ft	ft from B0 M1 Allow 21 with working (uses $25 \pi=79$) Ignore any units seen
2 (a)	$\frac{6}{3} \leq w<\frac{18}{3} \quad$ or $2 \leq w \ldots \ldots$ or $w<6$	M1	
	$2 \leq w<6 \quad$ or $2 \leq w \leq 5$	A1	
	2345	A1ft	ft M1 A0 and inequality of form $a \leq w<b$ or $a \leq w \leq b$ SC2 Answer 23456 or 345 with MO SC1 Answer 691215 with M0 $\operatorname{SC} 1 \frac{6}{3}<w \leq \frac{18}{3}$
2 (b)	16	B1	
2 (c)	their min from (a) - 3	M1	
	-1	A1ft	ft their min from (a)
3 (a)	$(5,0)$	B1	($5 x, 0 y$) is B0 Check diagram for answer written next to P if answer line is blank
3 (b)	Correct elimination of a letter eg $2 x=15-3 x$	M1	$\text { oe eg } y=15-\frac{3}{2} y$
	Correctly collects terms eg $2 x+3 x=15$	M1dep	$\text { oe eg } y+\frac{3}{2} y=15$
	$(3,6)$	A1	Allow $x=3$ and $y=6$ if not contradicted on answer line

3 (c)	$\frac{1}{2} \times$ their $5 \times$ their 6	M1	oe eg $\frac{2 \times 6}{2}+\frac{3 \times 6}{2}$

4 (a)	$\frac{2}{5} n \quad \text { or } \quad 0.4 n$	B1	oe
	$(10 m=) 10 \times$ their $\frac{2}{5} n \quad(=4 n)$	M1	$10 \times 2(=20)$ and $3 \times 5(=15)$
4 (b)	4:3	A1ft	oe numerical ratio of integers ft their $\frac{2}{5} n$ if used

5	$25 x^{2}-15 x-15 x+9$	M1	4 terms with 3 correct including a term in x^{2}
	$\begin{aligned} & 25 x^{2}-15 x-15 x+9 \text { or } \\ & 25 x^{2}-30 x+9 \end{aligned}$	A1	Fully correct
	Correctly differentiates their quadratic $\begin{array}{ll} 50 x-15-15 & \text { or } \\ 50 x-30 \end{array}$	M1	ft their $25 x^{2}-15 x-15 x+9$
	$\begin{aligned} & 10(5 x-3) \text { or } 5(10 x-6) \text { or } \\ & 2(25 x-15) \end{aligned}$	A1ft	ft M1 A0 M1 if their $50 x-30$ factorises to $a(b x-c)$ where a, b and c are integers >1
	Alternative		
	$2(5 x-3) \times 5$	M2	
	$\begin{array}{lll} 10(5 x-3) & \text { or } 5(10 x-6) & \text { or } \\ 2(25 x-15) & & \end{array}$	A2	

6 (a)	$(c+4)(c+1)$ or $3(c+1)$	M1	Correct factorisation
	$\frac{(c+4)(c+1)}{3(c+1)}=\frac{c+4}{3}$	A1	Must be a fraction and completed to $\frac{c+4}{3}$
	Correctly converts to a common denominator eg 1 $\frac{2(c+4)}{6}+\frac{3-2 c}{6}$ eg 2 $\frac{6(c+4)}{18}+\frac{3(3-2 c)}{18}$	M1	M2 $\frac{2 c}{6}+\frac{8}{6}+\frac{3}{6}-\frac{2 c}{6}$

6 (b)	Correctly expands their brackets (must have common denominator) $\frac{2 c+8+3-2 c}{6}$ or $\frac{2 c+8}{6}+\frac{3-2 c}{6}$	M1	Allow M1 if their first line of working is $\frac{2 c+4+3-2 c}{6} \text { or } \frac{2 c+4}{6}+\frac{3-2 c}{6}$
	$\frac{11}{6} \text { or } 1 \frac{5}{6} \text { or } 1.833(\ldots . .)$	A1	$\frac{33}{18} \mathrm{~A} 0 \quad \frac{5.5}{3} \mathrm{~A} 0 \quad \frac{8+3}{6} \mathrm{~A} 0$
	Alternative method		
	Correctly converts to a common denominator $\text { eg } \frac{6\left(c^{2}+5 c+4\right)}{6(3 c+3)}+\frac{(3-2 c)(3 c+3)}{6(3 c+3)}$	M1	oe May also expand the denominator
	Correctly expands their brackets (must have common denominator) $\begin{aligned} & \frac{6 c^{2}+30 c+24+9 c+9-6 c^{2}-6 c}{6(3 c+3)} \\ & \frac{6 c^{2}+30 c+24}{6(3 c+3)}+\frac{9 c+9-6 c^{2}-6 c}{6(3 c+3)} \end{aligned}$	M1	oe May also expand the denominator
	$\frac{11}{6}$ or $1 \frac{5}{6}$ or $1.833(\ldots)$.	A1	$\frac{33}{18}$ A0 $\frac{5.5}{3} \mathrm{~A} 0 \quad \frac{8+3}{6} \mathrm{~A} 0$
7	Scale on the y-axis identified correctly eg Intercept of line A with y-axis identified as 2	B1	oe Must be unambiguous identification
	Scale on the x-axis identified correctly eg Intercept of line A with x-axis identified as 2	B1	oe Must be unambiguous identification
	Correct attempt at gradient $\text { eg } \frac{\text { their } 5}{\text { their } 6}$	M1	ft their scales
	$y=\frac{5}{6} x-5 \text { or } 6 y=5 x-30$	A1ft	ft B0 B1 M1 or B1 B0 M1 oe $\frac{5}{6} x-5$ is B2 M1 A0

$\mathbf{8 ~ (a) ~}$	$y=-3$ or $\quad y+3=0$	B 1	Allow $y=0 x-3$
$\mathbf{8 (b)}$	$x=1 \quad$ or $\quad x-1=0$	B 1	
$\mathbf{8}(\mathbf{c})$	$-2<x<1$	B 1	Unambiguously selected

9	(horizontal =) $8 \cos 42 \quad(=[5.9,6])$ or (horizontal =) $8 \sin 48 \quad(=[5.9,6])$	M2	M1 $\cos 42=\frac{x}{8}$ or $\sin 48=\frac{x}{8}$ (x is the horizontal)
	$\begin{gathered} (\text { vertical }=) 8 \sin 42(=[5.35,5.4]) \text { or } \\ (\text { vertical }=) 8 \cos 48(=[5.35,5.4]) \text { or } \\ \text { (vertical }=) \sqrt{8^{2}-\text { their }[5.9,6]^{2}} \\ (=[5.35,5.4]) \end{gathered}$	M2	M1 $\sin 42=\frac{y}{8}$ or $\cos 48=\frac{y}{8}$ (y is the vertical) or $8^{2}-$ their $[5.9,6]^{2}$
	[35.4, 35.5]	A1	
	Alternative		
	$\begin{aligned} & (\text { vertical }=) 8 \sin 42 \quad(=[5.35,5.4]) \\ & (\text { vertical }=) 8 \cos 48(=[5.35,5.4]) \end{aligned}$	M2	M1 $\sin 42=\frac{y}{8} \quad$ or $\cos 48=\frac{y}{8}$ (y is the vertical)
	$\begin{gathered} \text { (horizontal }=) 8 \cos 42(=[5.9,6]) \text { or } \\ \text { (horizontal=) } 8 \sin 48(=[5.9,6]) \text { or } \\ \text { (horizontal }=) \sqrt{8^{2}-\text { their }[5.35,5.4]^{2}} \\ (=[5.9,6]) \end{gathered}$	M2	M1 $\cos 42=\frac{x}{8}$ or $\sin 48=\frac{y}{8}$ (x is the horizontal) or $8^{2}-$ their $[5.35,5.4]^{2}$
	[35.4, 35.5]	A1	SC2 [31.8, 31.9] or

10	Straight line through ($-3,0$) and $(0,3)$	B1	Lines must be ruled Only penalise (by 1 mark) extended lines if B1 B1 B1 SC2 Any graph that passes through $(-3,0)$ and $(0,3)$ and $(1,3)$ and $(2,1)$
	Straight line through (0,3) and (1, 3)	B1	
	Straight line through (1,3) and (2,1)	B1	
11 (a)	$\left(\begin{array}{cc}-a & 2 b-c \\ 0 & \frac{1}{3} b\end{array}\right)$	B2	B1 2 or 3 correct elements
	$a=-1$	B1ft	ft their matrix in (a) or if (a) correct ft their b
11 (b)	$b=3$	B1ft	

| $c=6$ | B 1 ft | |
| :--- | :--- | :--- | :--- |

12	$5 n^{2}-5 n+3 n-3$	M1	oe 4 terms with 3 correct including a term in n^{2}
	$5 n^{2}-5 n+3 n-3$	A1	Fully correct oe eg $5 n^{2}-2 n-3$
	$6 n^{2}-3$	A1	
	$3\left(2 n^{2}-1\right)$ or states that both terms are multiples of 3	A1	oe

13	Identifies (1, 3) or (5,11)	B1	May be implied by M1 or seen in a table of values or on a graph or as a mapping (eg $1 \rightarrow 3$)
	$\frac{\text { their } 11-\text { their } 3}{\text { their } 5-\text { their } 1} \quad(=2)$	M1	oe
	$y-$ their $3=$ their $2(x-$ their 1$)$ or y - their $11=$ their $2(x-$ their 5$)$	M1	$y=$ their $2 x+c$ and substitutes their $(1,3)$ or their $(5,11)$
	$(y=) 2 x+1$	A1	
	Alternative 1		
	Identifies (1,11) or (5, 3)	B1	May be implied by M1 or seen in a table of values or on a graph or as a mapping (eg $3 \rightarrow 1$)
	$\frac{\text { their } 11-\text { their } 3}{\text { their } 1-\text { their } 5} \quad(=-2)$	M1	oe
	y - their $11=$ their $-2(x-$ their 1$)$ or $y-$ their $3=$ their $-2(x-$ their 5$)$	M1	$y=$ their $-2 x+c$ and substitutes their $(1,11)$ or their $(5,3)$
	$(y=)-2 x+13$	A1	
	Alternative 2		
	$m+c=3$ or $5 m+c=11$	B1	$m+c=11$ or $5 m+c=3$
	Eliminates a letter from their 2 equations $\text { eg } \quad 5 m-m=11-3$	M1	Eliminates a letter from their 2 equations $\text { eg } \quad 5 m-m=3-11$
	$m=2$ or $c=1$	A1	$m=-2$ or $c=13$
	$(y=) 2 x+1$	A1	$(y=)-2 x+13$

14	First and second differences correct $\begin{array}{lllll}\text { ie } & 4 & 6 & 8 & (10)\end{array}$ 2 (2)	M1	
	Correctly subtracts their $\frac{2}{2} n^{2}$ from given sequence ie $\left.\begin{array}{lllll}10 & 11 & 12 & (13 & 14\end{array}\right)$	M1	
	(1) n	M1dep	dep on M2
	$n^{2}+n+9$	A1	oe eg $n^{2}+n+10-1$
	Alternative method		
	$\begin{aligned} & \text { Any three of } \\ & a+b+c=11 \\ & 4 a+2 b+c=15 \\ & 9 a+3 b+c=21 \\ & 16 a+4 b+c=29 \\ & 25 a+5 b+c=39 \end{aligned}$	M1	Allow one error but each of their three equations must have a, b and c
	Eliminates one variable to obtain a pair of equations in two variables eg $3 a+b=4$ and $5 a+b=6$	M1	Allow one error
	Eliminates one variable correctly eg $2 a=2$	M1dep	dep on M2
	$n^{2}+n+9$	A1	oe eg $n^{2}+n+10-1$

15 (a)	$\frac{a^{9}(\times) b^{10}}{a^{11}(\times) b^{6}} \quad$ or $\quad a^{9-11}(x) b^{10-6}$	M1	
	$a^{-2}(x) b^{4} \quad \text { or } \quad \frac{b^{4}}{a^{2}}$	A2	A1 a^{-2} or b^{4} (M1 is implied) or $\left(\frac{b^{2}}{a}\right)^{2}$ or $\left(a^{-1}(x) b^{2}\right)^{2}$ SC1 $\quad a^{2}(\times) b^{-4}(\times c)$

15 (b)
$q^{-3}(x) r^{-2}$ or $\frac{1}{q^{3}(x) r^{2}}$
B2
B1 q^{-3} or r^{-2} or $\left(q^{6}(\times) r^{4}\right)^{-\frac{1}{2}}$ or $\left(q^{-6}(\times) r^{-4}\right)^{\frac{1}{2}}$ or $\frac{1}{\sqrt{q^{6}(\times) r^{4}}}$ or
$\sqrt{\frac{1}{q^{6}(\times) r^{4}}}$ or $\quad\left(q^{3}(\times) r^{2}\right)^{-1}$
or $p^{-1}=q^{3}(x) r^{2}$
or $\frac{1}{p}=q^{3}(\times) r^{2}$
or $p^{2}=q^{-6}(x) r^{-4}$
or $p^{2}=\frac{1}{q^{6}(\times) r^{4}}$

16	Correct expressions or value for any three of these angles angle $P A C=x$ angle $C A B=90$ angle $P B A=x$ angle $P C A=180-2 x$ or $90+x$ angle $A C B=90-x$ or $2 x$ angle $C O A=2 x$ or $90-x$ angle $P A O=90$ angle $C A O=90-x$ or $2 x$ angle $B A D=2 x$ or $90-x$ angle $A O B=180-2 x$ or $90+x$ angle $O A B=x$	B3	O is the centre of the circle D is the point at the end of $P A$ extended B2 Any 2 correct B1 Any 1 correct
	Writes a correct equation that has solution 30 eg $1 P A C+C A B+x+P B A=180$ eg $2 P C A+A C B=180$ eg $3 A C B+C A B+C B A=180$ eg $4 \quad P A O+A P C+P O A=180$	M1	oe
	30	A1	

Q	Answer	Mark	Comments
17	$\begin{aligned} & 4(x+3)+x-2 \text { or } \\ & \frac{4(x+3)}{(x-2)(x+3)}+\frac{x-2}{(x-2)(x+3)} \end{aligned}$	M1	Must be correct
	$\left\{\begin{array}{l} 4 x+12+x-2 \quad(=5 x+10) \quad \text { or } \\ \frac{4 x+12}{(x-2)(x+3)}+\frac{x-2}{(x-2)(x+3)} \end{array}\right.$	A1	
	$5(x-2)(x+3)$	M1	Must have 5 and be correct Must be in an equation and not a denominator oe eg $(5 x-10)(x+3)$
	(5) $\left(x^{2}+3 x-2 x-6\right)$	M1	5 may be missing Must be in an equation and not a denominator 4 terms including term in x^{2} with 3 correct oe eg $1 x^{2}+x-6$ eg $25 x^{2}+15 x-10 x-6$ (1 error)
	$5 x^{2}=40$	A1	oe eg $5 x^{2}-40=0$ Must collect all terms and have an equation
	Correct attempt at solution of their quadratic $\text { eg } x=\sqrt{\frac{40}{5}}$	M1dep	dep on M3 Quadratic formula must have no errors in substitution If completing square must have no errors up to $p(x-q)^{2}=r \quad p(x-q)^{2}-r=0$
	[2.8, 2.83] and [-2.83, -2.8]	A1ft	oe eg $(+) \sqrt{8}$ and $-\sqrt{8}$ or $\pm \sqrt{8}$ ft their quadratic equation if M4 SC7 Both solutions correct (no valid method) SC3 One solution correct (no valid method)

18	$3 x^{2}+b$	M1	At least one term correct
	Substitutes -2 into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and equates to zero $3 \times(-2)^{2}+b=0$	M1dep	Must have a term in x $12+b=0$
	$b=-12$	A1	
	$(-2)^{3}+$ their $b(-2)+c=20$	M1dep	dep on M2 and having a value for b
	$c=4$	A1ft	ft their b and M2 A0 M1dep with no errors in their final M1

Q	Answer	Mark	Comments
19 (a)	$\left[\begin{array}{ll} (12 \div 2)^{2}+4.5^{2} & \text { or } \\ 36+20.25 & \text { or } \\ 7.5^{2}-4.5^{2} & \text { or } \\ 7.5^{2}-6^{2} & \end{array}\right.$	M1	$4.5 \div 3(=1.5)$ and $6 \div 4(=1.5)$
	$\begin{aligned} & \sqrt{56.25}=7.5 \quad \text { or } \\ & \sqrt{36+20.25}=7.5 \text { or } \\ & \sqrt{6^{2}+4.5^{2}}=7.5 \text { or } \\ & 6^{2}+4.5^{2}=56.25 \text { and } 7.5^{2}=56.25 \text { or } \\ & \sqrt{20.25}=4.5 \quad \text { or } \\ & \sqrt{36}=6 \\ & \sqrt{7.5^{2}-4.5^{2}}=6 \quad \text { or } \\ & \sqrt{7.5^{2}-6^{2}}=4.5 \quad \text { or } \end{aligned}$	A1	$5 \times 1.5=7.5$
19 (b)	$\begin{aligned} & \tan M B N=\frac{3}{7.5} \\ & \sin M B N=\frac{3}{\sqrt{3^{2}+7.5^{2}}} \end{aligned} \quad \text { or } \quad \begin{aligned} & \cos M B N=\frac{7.5}{\sqrt{3^{2}+7.5^{2}}} \end{aligned}$	M1	Must be correct oe eg $\tan ^{-1} \frac{3}{7.5}$
	[21.8, 21.80141]	A1	
19 (c)	$\begin{aligned} & \sin B N C=\frac{4.5}{7.5} \quad \text { or } \\ & \cos B N C=\frac{12 \div 2}{7.5} \quad \text { or } \\ & \tan B N C=\frac{4.5}{12 \div 2} \end{aligned}$	M1	$\begin{aligned} & \text { oe eg1 } \sin ^{-1} \frac{4.5}{7.5} \\ & \quad \text { eg } 2 \cos B N C=\frac{7.5^{2}+6^{2}-4.5^{2}}{2 \times 7.5 \times 6} \end{aligned}$
	[143, 143.1301024]	A1	SC1 [36.8698976, 37]
	Alternative 1		
	$B D=\sqrt{12^{2}+4.5^{2}} \text { or } B D^{2}=12^{2}+4.5^{2}$ and $\cos B N D=\frac{7.5^{2}+6^{2}-\text { their } B D^{2}}{2 \times 7.5 \times 6}$	M1	
	[143, 143.1301024]	A1	SC1 [36.8698976, 37]
	Alternative 2		

| $\sin X N B=\frac{12 \div 2}{7.5}$ | $(=[53.1,53.13])$ or | M 1 | X is midpoint of AB |
| :--- | :--- | :--- | :--- | :--- |
| $\cos X N B=\frac{4.5}{7.5}$ | $(=[53.1,53.13])$ or | | |
| $\tan X N B=\frac{12 \div 2}{4.5}$ | $(=[53.1,53.13])$ | | |
| $[143,143.1301024]$ | | A1 | SC1 $[53,53.1301024]$ |

20	$\frac{1}{3}(x) \pi(x)(2 p)^{2}(x) 5 p \quad\left(=\frac{20 \pi}{3} p^{3}\right)$	B1	oe Missing brackets B0 unless recovered May be implied by working for M1
	their $\frac{1}{3}(x) \pi(x)(2 p)^{2}(x) 5 p=22500 \pi$	M1	oe eg $\frac{20 \pi}{3} p^{3}=22500 \pi$ π may already be cancelled or value for π may be substituted in Must be equating two volumes
	Correctly rearranges to $p^{3}=$ eg $p^{3}=22500 \pi \div$ their $\frac{20 \pi}{3}$	M1dep	oe eg $p=\sqrt[3]{3375}$
	15	A1	SC3 [18.8, 18.9]

21	$2 a^{3}-7 a^{2}+3 a$	M1	Must be correct
	$2 a^{2}-7 a+3$	M1dep	Must be correct May also see factor a
	$(2 a-1)(a-3)$	A1	May also see factor a
	3	A1ft	ft M1 M1 A0 Other solutions may be seen but 3 must be selected as their answer
	Alternative method		
	$(x-a)\left(2 x^{2}+2 a x-3\right)$	M1	Must be correct
	$-3(x)-2 a^{2}(x)=-7 a(x)$	M1dep	Equating coefficients of x
	$\begin{aligned} & 2 a^{2}-7 a+3 \text { and } \\ & (2 a-1)(a-3) \end{aligned}$	A1	
	3	A1ft	ft M1 M1 A0 Other solutions may be seen but 3 must be selected as their answer

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2 2}$	$\tan \theta(\tan \theta+3)$ or $\tan \theta=0$ or $\sin \theta(\sin \theta+3 \cos \theta)$ or $\sin \theta=0$	M 1	oe eg $t(t+3)$ Must be correct
	180	A 1	
	$\tan \theta=-3$	A 1	
	$[108,108.44]$	A 1	B 1 ft
$[288,288.44]$	$\mathrm{ft} 180+$ any angle (other than 0 and 90$)$ if in range		

23	Appropriate and correct sine rule in triangle $A B P$ eg $\frac{B P}{\sin x}=\frac{A B}{\sin 30}$	M1	$\text { oe eg } \frac{B P}{A B}=\frac{\sin x}{\sin 30}$
	Appropriate and correct sine rule in triangle $A C P$ eg $\frac{P C}{\sin x}=\frac{A C}{\sin 150}$	M1	oe eg $P C=\frac{\sin x}{\sin 150} \times A C$
	Eliminates $\sin x$ eg $\frac{P C}{\frac{B P \sin 30}{A B}}=\frac{A C}{\sin 150}$	A1	Must have M1 M1 oe eg $\frac{B P}{A B} \sin 30=\frac{P C}{A C} \sin 150$
	States $\sin 30=\sin 150$	M1dep	dep on M1 M1 oe eg Substitutes $\sin 30=\frac{1}{2}$ and $\sin 150=\frac{1}{2}$
	Completes fully eg $\frac{P C}{A C}=\frac{B P}{A B}$ and $\quad \frac{A B}{A C}=\frac{B P}{P C}$	A1	Must have all 4 previous marks SC1 Sine rule in triangle $A B P$ using angle $150-x$ or Sine rule in triangle $A C P$ using angle $30-x$

