Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2013

Further Mathematics

8360/1

For Examiner's Use

Examiner's Initials

Mark

Pages

3

4 - 5

6 - 7

8 - 9

10 - 11

12 - 13

14 - 15

16

TOTAL

Level 2

Paper 1 **Non-Calculator**

Wednesday 19 June 2013 1.30 pm to 3.00 pm

For this paper you must have:

mathematical instruments.

You may **not** use a calculator.

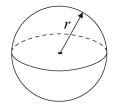
Time allowed

1 hour 30 minutes

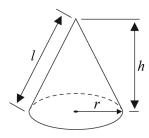
Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

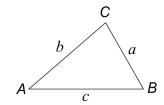
Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Formulae Sheet


Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$


Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

Area of triangle
$$=\frac{1}{2}ab\sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

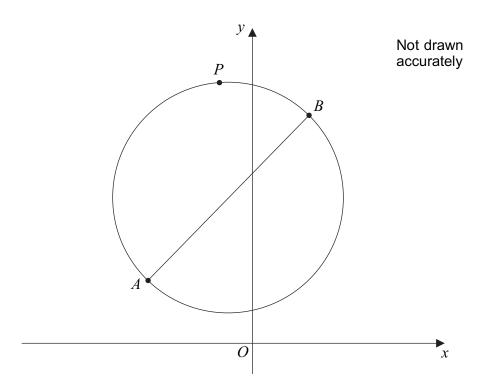
$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1	A curve has gradient function	$\frac{\mathrm{d}y}{\mathrm{d}x} = 9 - x^3$	
1 (a)	Work out the gradient of the curve	e when $x = -1$	
	Answer		(2 marks)

Work out the value of x where the rate of change of y with respect to x is 1.

Turn over for the next question


0 3

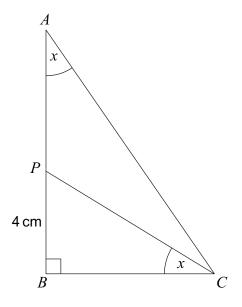
1 (b)

Turn over ▶

2 A is (-4, 3) and B is (2, 11)

AB is a diameter of the circle.

2 (a) Work out the coordinates of the centre of the circle.


2 (b)	Work out the radius of the circle.	
	Radius =	(2 marks)
2 (c)	Write down the equation of the circle.	
	Answer	(1 mark)
2 (d)	P is another point on the circle. The gradient of the line AP is 2.	
	Write down the gradient of the line PB .	
	Answer	(1 mark)
	Town areas for the most arrestion	

Turn over for the next question

Turn over ▶

6

ABC is a right-angled triangle. P is a point on AB.

Not drawn accurately

$BP = 4 \mathrm{cm}$	and	$\tan x = \frac{2}{3}$
		J

3 (a) Work out the length of BC.

Answer cm (2 marks)

3 (b) Work out the length of AP.

Answer cm (3 marks)

4	Solve	$\sqrt{(33+\sqrt{x})}=6$					
			$x = \dots$			(3 n	narks)
						`	,
5 (a)	Show that	$(x+7)^2 - (x-3)^2$	3) ²	simplifies to	20(x+2)		
						(3 n	 narks)
5 (b)	Hamas an		107	2 072			
5 (b)	Hence, or o	otherwise, work out	107	97-			
		Answer				(2 n	narks)

Turn over ▶

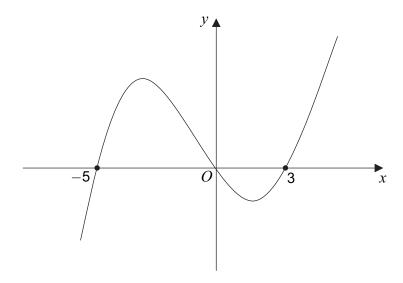
13

6	Simplify $(3xy^5)^4$
	Answer (2 marks)
	, wiewer
7	Expand and simplify $(y^2 - 5y + 2)(2y - 3)$
	Answer(3 marks)

8	A curve has equation	$y = x^4 - 5x^2 + 9$
---	----------------------	----------------------

8 (a) Work out
$$\frac{dy}{dx}$$

$$\frac{dy}{dx} =$$
 (2 marks)


8 (b)	Work out the equation of the tangent to the curve at the point where $x=2$
	Give your answer in the form $y = mx + c$

Turn over ▶

9	Solve	$x^2 + 6x + 7 = 0$	
	Give your	ur answer in the form $a\pm\sqrt{b}$, where a and b are integers.	
		Answer	. (4 marks)
10	Make x th	the subject of the formula $\frac{a+2x}{a-x} = n$	
		u - x	

11 Here is a sketch of a cubic function y = f(x)

11 (a) Use the sketch to write down the **three** linear factors of f(x).

Answer,	,	(2 marks
---------	---	----------

11 (b) You are given that $f(x) = x^3 + bx^2 + cx$

Work out the values of b and c.

$$b = \dots, c = \dots$$
 (2 marks)

12	Work out all solutions for x and y if	$\begin{pmatrix} x & 3 \\ 1 & y \end{pmatrix} \begin{pmatrix} x \\ -4 \end{pmatrix} = \begin{pmatrix} 4x \\ 8 \end{pmatrix}$
----	--	--

Answer...... (5 marks)

13	Solve	$y(\sqrt{3}-1)=8$			
	Give your	answer in the form	$a+b\sqrt{3}$	where a and b are integer	ers.
			<i>y</i> =		(4 marks)

Turn over for the next question

Turn over ▶

9

ABP and ADQ are tangents to the circle, centre O .
${\cal C}$ lies on the circumference of the circle.
Not drawn accurately
Prove that $y = 2x$ Give reasons for any statements you make.

					(6 marks)
15	Express	$2x^2 - 12x - 7$	in the form	$a(x+b)^2 + c$	
		Answer			(4 marks)
		Turn o	ver for the next o	nuestion	
		i ui ii O	er for the next (₁ นธอนบท	

1 5

Turn over ▶

16	Solve $x^{-\frac{2}{3}} = 7\frac{1}{9}$
	Write your answer as a proper fraction.
	(5 marks)
	$x = \dots $ (5 marks)

END OF QUESTIONS

Copyright $\ensuremath{\texttt{©}}$ 2013 AQA and its licensors. All rights reserved.

