

Level 2 Certificate in Further Mathematics

 June 2013Paper 1 8360/1

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^0]Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
M dep A method mark dependent on a previous method mark being awarded.
B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

Q	Answer	Mark	Comments
$\mathbf{1 a}$	$9-(-1)^{3}$ or $9--1$	M1	
	10	A1	SC1 for 8
$\mathbf{1 0} \mathbf{b}$	$9-x^{3}=1$ or $x^{3}=8$	M1	oe
	2	A1	SC1 for -2

$\mathbf{2 a}$	$\left[\frac{-4+2}{2}, \frac{3+11}{2}\right]$	M1	oe
	$(-1,7)$	SC1 for one coordinate correct	
$\mathbf{2 b}$	$\left(r^{2}=\right) 3^{2}+4^{2}$ or $\left(r^{2}=\right) 25$ or $\left(d^{2}=\right) 6^{2}+8^{2}$ or $\left(d^{2}=\right) 100$	M1	oe ft their centre
	$(r=5)$	A1ft	SC1 for 10
$\mathbf{2 c}$	$(x+1)^{2}+(y-7)^{2}=25$	B1ft	oe ft their centre and radius
$\mathbf{2 d}$	$-\frac{1}{2}$ or -0.5	B1	Accept $\frac{-1}{2}, \frac{1}{2}$ or -.5

3a	$\frac{4}{B C}=\frac{2}{3}$	M1	oe
	(BC =) 6	A1	
3b	$\frac{\text { their } 6}{A B}=\frac{2}{3}$	M1	oe eg follow through their 6 using a similar triangles/scale factor method
	($A B=$) 9	A1ft	
	$(A P=) 5$	A1ft	

4	$6^{2}(=36)$	M1	
	${ }^{2} x=$ their $36-33$	M1	oe
	9	A1	

Q	Answer	Mark	Comments
5a	$(x+7+x-3)(x+7-x+3)$	M1	Allow one sign error
	$(2 x+4) \times 10$	A1	oe
	$10 \times 2(x+2)$ or $20 x+40$	A1	
	Alternative method		
	$\begin{aligned} & x^{2}+7 x+7 x+49 \\ & (-) x^{2}-3 x-3 x+9 \end{aligned}$	M1	oe Allow one error
	$\begin{array}{r} x^{2}+7 x+7 x+49 \\ \quad-\left(x^{2}-3 x-3 x+9\right) \end{array}$	A1	oe All terms correct
	$\begin{aligned} x^{2} & +7 x+7 x+49 \\ & -x^{2}+3 x+3 x-9=20 x+40 \end{aligned}$	A1	oe
5b	$20(100+2)$ or 204×10	M1	11449 or 9409 seen
	2040	A1	

$\mathbf{6}$	$81 x^{4} y^{20}$	B2	B1 for two components correct

7	$2 y^{3}-10 y^{2}+4 y-3 y^{2}+15 y-6$	M1	Must have at least five terms with at least four correct
	$2 y^{3}-10 y^{2}+4 y-3 y^{2}+15 y-6$	A1	
	$2 y^{3}-13 y^{2}+19 y-6$	A1ft	ft from M1 A0

8a	$4 x^{3}-10 x(+0)$	B2	Accept $4 \times x^{3}-10 \times x$ B1 for $4 x^{3}$ or $4 \times x^{3}$ B1 for $-10 x$ or $-10 \times x$ $4 x^{3}-10 x+$ something extra scores B1 eg $4 x^{3}-10 x+9$	
8b	(when $x=2)($ gradient $=) 12$	B1ft	ft their answer to (a)	
	(when $x=2)(y=) 5$	B1		
	$\begin{aligned} & \text { their } 5=\text { their } 12 \times 2+c \\ & \quad \text { or } \\ & y-5=12(x-2) \end{aligned}$	M1	oe	
	$y=12 x-19$	A1ft	ft their m and their 5	

Mark Scheme Paper 1 - June 2013-8360/1-AQA Level 2 Certificate in Further Mathematics

Q	Answer	Mark	Comments
9	$x=\frac{-6 \pm \sqrt{\left\{6^{2}-4(1)(7)\right\}}}{2(1)}$	M1	Allow one substitution or sign error
	$x=\frac{-6 \pm \sqrt{ } 8}{2}$	A1	
	$\sqrt{ } 8=2 \sqrt{ } 2$	A1ft	For simplifying their surd (if possible to do so)
	$x=-3 \pm \sqrt{ } 2$	A1	
	Alternative method		
	$(x+3)^{2} \ldots \ldots$	M1	
	$\begin{aligned} & (x+3)^{2}-9+7(=0) \text { or } \\ & (x+3)^{2}-2(=0) \text { or } \\ & (x+3)^{2}=2 \end{aligned}$	M1dep	
	$x+3=(\pm) \sqrt{ } 2$	M1dep	
	$x=-3 \pm \sqrt{ } 2$	A1	

| 10 | M1 | |
| :---: | :--- | :--- | :--- |
| | oe | |

11a	$x+5, x$ and $x-3$	B2	Any order B1 for any two of $x, x+5$ or $x-3$ B1 for $x, x-5$ and $x+3$
11b	$\mathrm{f}(x)=x(x+5)(x-3)$	M1	ft their three factors
	$\begin{aligned} & \mathrm{f}(x)=x^{3}+2 x^{2}-15 x \\ & \text { or } b=2 \text { and } c=-15 \end{aligned}$	A1ft	ft their three factors, one of which must be x
	Alternative method		
	$\begin{aligned} & (-5)^{3}+b(-5)^{2}+c(-5)=0 \\ & \quad \text { and } \\ & (3)^{3}+b(3)^{2}+c(3)=0 \end{aligned}$	M1	oe eg $25 b-5 c=125$ and $9 b+3 c=-27$ Allow one error in total
	$\begin{aligned} & b=2 \text { and } c=-15 \\ & \text { or } \mathrm{f}(x)=x^{3}+2 x^{2}-15 x \end{aligned}$	A1	

Mark Scheme Paper 1 - June 2013-8360/1 - AQA Level 2 Certificate in Further Mathematics

Q	Answer	Mark	Comments
12	$x^{2}-12$ or $x-4 y$	M1	
	$x^{2}-12=4 x$ and $x-4 y=8$	M1	These can still be in matrix form
	$(x-6)(x+2)(=0)$	A1	$x=\frac{-(-4) \pm \sqrt{\left\{(-4)^{2}-4 \times 1 \times(-12)\right\}}}{2(1)}$
	$x=6$ and -2	A1ft	ft their quadratic if possible or $x=6$ and $y=-1 / 2$
	$y=\frac{-1}{2} \text { and }-2^{1} / 2 \text { or }-\frac{5}{2}$	A1ft	ft from their x values or $x=-2$ and $y=-2^{1 / 2}$
	Alternative method		
	$x^{2}-12$ or $x-4 y$	M1	
	$x^{2}-12=4 x$ and $x-4 y=8$	M1	These can still be in matrix form
	$(4)(2 y+5)(2 y+1)(=0)$ or $(8 y+20)(2 y+1)(=0)$ or $(2 y+5)(8 y+4)(=0)$	A1	$y=\frac{-12 \pm \sqrt{12^{2}-4 \times 4 \times 5}}{2(4)}$ or $y=\frac{-48 \pm \sqrt{48^{2}-4 \times 16 \times 20}}{2(16)}$
	$y=-\frac{1}{2} \text { and }-2^{1} / 2 \text { or }-\frac{5}{2}$	A1ft	ft their quadratic if possible or $y=-\frac{1}{2}$ and $x=6$
	$x=6$ and -2	A1ft	ft from their y values or $y=-2^{1} / 2$ and $x=-2$

Q	Answer	Mark	Comments
14	Join BD		
	Angle $B D C=2 x$	M1	Alternate segment theorem
	Angle $B D O=x$	M1	
	Angle $D B O=x$	M1	Isosceles triangle BOD
	Angle $B O D=180-2 x$	M1	Angle sum of triangle $B O D$
	$\begin{aligned} & y=360-90-90-(180-2 x) \\ & y=2 x \end{aligned}$	A1	Angle sum of quadrilateral $A B O D$ $y=2 x$ clearly shown from simplification
	Must have at least two different reasons stated in the proof	B1ft	
	Alternative method 1		
	Angle $O B C=90-2 x$	M1	Tangent-radius property
	Angle OCB $=90-2 x$	M1	Isosceles \triangle OBC
	Angle $O C D=x$	M1	Isosceles $\triangle O C D$
	$\begin{aligned} & \text { Angle } B C D=90-2 x+x \\ &=90-x \\ & \text { hence } \\ & \text { Angle } B O D=180-2 x \end{aligned}$	M1	Angle at centre $=2 \times$ angle at circumference
	$\begin{aligned} & y=360-90-90-(180-2 x) \\ & y=2 x \end{aligned}$	A1	Angle sum of quadrilateral $A B O D$ $y=2 x$ clearly shown from simplification
	Must have at least two different reasons stated in the proof	B1ft	

Q	Answer	Mark	Comments
14	Alternative method 2		
	Angle $O B C=90-2 x$	M1	Tangent-radius property
	Angle $O C B=90-2 x$	M1	Isosceles $\triangle O B C$
	Angle $O C D=x$	M1	Isosceles \triangle OCD
	$\begin{aligned} \text { Angle } B C D & =90-2 x+x \\ & =90-x \end{aligned}$ hence Angle $B O D=180-2 x$	M1	Angle at centre $=2 \times$ angle at circumference
	$\begin{aligned} \text { Angle } \begin{aligned} B O D & =360-90-90-y \\ & =180-y \end{aligned} \text { 位 } \end{aligned}$ hence $y=2 x$	A1	Angle sum of quadrilateral $A B O D$ $y=2 x$ clearly shown from comparison
	Must have at least two different reasons stated in the proof	B1ft	
	Alternative method 3		
	Angle $O B C=90-2 x$	M1	Tangent-radius property
	Angle $O C B=90-2 x$	M1	Isosceles $\triangle O B C$
	Angle $O C D=x$	M1	Isosceles \triangle OCD
	$\begin{aligned} \text { Angle } B C D & =90-2 x+x \\ & =90-x \end{aligned}$	M1	
	$\begin{gathered} y=360-90-(90-2 x)- \\ (90-x)-x-90 \end{gathered}$ hence $y=2 x$	A1	Angle sum of quadrilateral $A B C D$ $y=2 x$ clearly shown from simplification
	Must have at least two different reasons stated in the proof	B1ft	
	Alternative method 4		
	Angle BOD $=180-y$	M1	Angle sum of quadrilateral $A B O D$
	Angle $O C D=x$	M1	Isosceles \triangle OCD
	Angle $O B C=90-2 x$	M1	Tangent-radius property
	$\begin{aligned} & \text { Angle } B C O=90-2 x \\ & \quad \text { hence } \\ & \text { Angle } B O D \text { reflex }=360- \\ & (90-2 x)-(90-2 x)-x-x \\ & =180+2 x \end{aligned}$	M1	Isosceles $\triangle O B C$ Angle sum of quadrilateral $B O D C$... this can also come from Angle BOC (4x) + Angle DOC (180-2x)
	$180-y+180+2 x=360$ hence $y=2 x$	A1	Angles round a point $y=2 x$ clearly shown from rearranging
	Must have at least two different reasons stated in the proof	B1ft	

Q	Answer	Mark	Comments
15	$2\left(x^{2}-6 x\right) \ldots \ldots$	M1	
	$2(x-3)^{2} \ldots \ldots$.	M1dep	
	$\begin{array}{\|l} \hline 2\left((x-3)^{2}-9(-3.5)\right) \\ \text { or } \\ 2(x-3)^{2}-18(-7) \\ \hline \end{array}$	M1dep	
	$2(x-3)^{2}-25$	A1	
	Alternative method		
	$x^{2}+b x+b x+b^{2}$	M1	
	$a=2$	M1	
	$\begin{aligned} & -12=2 a b \text { or }-12=4 b \\ & \quad \text { and } \\ & -7=a b^{2}+c \text { or }-7=2 b^{2}+c \end{aligned}$	M1	
	$2(x-3)^{2}-25$	A1	

16	$7 \frac{1}{9}=\frac{64}{9}$	B1	Can be done at any stage
	$x^{\frac{2}{3}}=\frac{9}{64}$ or $\left({ }_{3} \sqrt{ }\right)^{2}=\frac{9}{64}$ or ${ }_{3} \sqrt{ }\left(x^{2}\right)=\frac{9}{64}$	M1	oe or the reciprocals $1 \div x^{\frac{2}{3}}=\frac{64}{9}$ or $\frac{1}{\left({ }_{3} \sqrt{ } x\right)^{2}}=\frac{64}{9}$ or $\frac{1}{3^{\sqrt{ }\left(x^{2}\right)}}=\frac{64}{9}$
	$\begin{aligned} & x=\left(\frac{9}{64}\right)^{\frac{3}{2}} \\ & \text { or } \left.\quad{ }_{3} \sqrt{ } x=\sqrt{\left[\frac{9}{64}\right.}\right] \\ & \text { or } x^{2}=\left[\frac{9}{64}\right]^{3} \end{aligned}$	M1	oe or the reciprocals $\frac{1}{x}=\left[\frac{64}{9}\right]^{3 / 2}$ or $\frac{1}{{ }_{3} \sqrt{x}}=\sqrt{ }\left[\frac{64}{9}\right]$ or $\frac{1}{x^{2}}=\left[\frac{64}{9}\right]^{3}$
	$\begin{aligned} & x=\left(\frac{3}{8}\right)^{3} \\ & \text { or } \frac{1}{x}=\left[\frac{8}{3}\right]^{3} \end{aligned}$	A1	
	$(x=) \pm \frac{27}{512} \text { or } \frac{27}{512} \text { or }-\frac{27}{512}$	A1	SC3 for $\frac{512}{27}$

[^0]: Further copies of this Mark Scheme are available from: aqa.org.uk

