Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics January 2013

Further Mathematics

8360/2

Level 2

Paper 2 Calculator

Tuesday 29 January 2013 1.30 pm to 3.30 pm

For this paper you must have:

- a calculator
- mathematical instruments.

Examiner's Initials Pages Mark 3 4 - 5 6 - 7 8 - 9 10 - 11 12 - 13 14 - 15 16 - 17 18 - 19 20 - 21 22 - 23 TOTAL

For Examiner's Use

Time allowed

• 2 hours

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere =
$$4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$
, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

3

1 A sketch of 2x + 3y = 12 is shown.

1 (a) Work out the coordinates of R.

.....

Answer (...... (1 mark)

1 (b) Work out the coordinates of the midpoint of *RS*.

Answer (.....) (2 marks)

2	In triangle PQR , X is a point on PQ .
	RX is perpendicular to PQ.

Work out the ratio $PX:XQ$ Give your answer in its simplest form.	
Answer: :	(4 marks)

3	5d - 3 > d + 17	
	 Answer (2 mar.	

4 Match each statement with an equation. You will **not** use all of the equations.

One has been done for you.

A curve passing through $(0,\,0)$

A curve passing through (1, 0)

A circle centre (2, -1)

A circle passing through (3, 1)

$$(x+2)^2 + (y-1)^2 = 1$$

$$y = x^3$$

$$y = x^3 + x - 2$$

$$(x-2)^2 + (y+1)^2 = 1$$

$$y = x^2 - 2$$

(3 marks)

(3 marks)

9

Turn over ▶

5 A parallelogram and a trapezium are shown. All lengths are in centimetres.

Work out the value of x.

 $x = \dots$ cm (4 marks)

Not drawn accurately

The area of the parallelogram is equal to the area of the trapezium.

6 A function f(x) is defined as

$$f(x) = 4$$

$$= x^{2}$$

$$= 12 - 4x$$

$$x < -2$$

$$-2 \leqslant x \leqslant 2$$

$$x > 2$$

6 (a) Draw the graph of y = f(x) for $-4 \le x \le 4$

(3 marks)

6 (b) Use your graph to write down **how many** solutions there are to f(x) = 3

Answer (1 mark
----------	--------

6 (c) Solve f(x) = -10

$$x =$$
 (2 marks)

10

Turn over ▶

7	Here are the first for	ur terms of	a sequen	ce.		
	4	<i>a</i> 9	а	14 <i>a</i>	19 <i>a</i>	
	The <i>n</i> th term of the	sequence i	$\frac{10n-2}{3}$	2		
	Work out the value	of a.				
			<i>a</i> =			(2 marks)
8 (a)	Factorise fully	5m² – 20p²	2			
	A	Answer				(3 marks)
8 (b)	You are given that	<i>p</i> = 15	and	5 <i>m</i> ² –	$20p^2=0$	
	Using your answer t	o part (a), d	or otherwi	se, work out	the values of m .	
	A	Answer				(2 marks)

9 (a)	Expand $(x+m)(x+n)$
	Answer (1 mark)
9 (b)	$x^2 + qx + r \equiv (x+m)(x+n)$
	Use your answer to part (a) to write q and r in terms of m and n .
	$q = \dots$
	$r = \dots (2 marks)$
9 (c)	r is an odd integer.
	Use your answer to part (b) to explain why q is an even integer.
	(2 marks)

10	ς – –	а		
10	$5 - \frac{1}{1}$	_	r	

10 (a)	Show that	r = S - a
10 (a)	Show that	$r - \frac{1}{S}$

 	 	(3 marks)

10 (b)	Work	out the	value	of r	when	S =	10 <i>a</i>
	ν,	VVOII	out the	valuc	01 /	VVIICII	\mathcal{L}	104

11 In the diagram, AB = BC

Prove that <i>ABCD</i> is a cyclic quadrilateral. Give reasons for any statements you make.
(3 marks)

Turn over ▶

12
$$f(x) = \sin x \qquad 180^{\circ} \leqslant x \leqslant 360^{\circ}$$
$$g(x) = \cos x \qquad 0^{\circ} \leqslant x \leqslant \theta$$

12 (a) Calculate the value of f(210°).

Answer (1 mark)

12 (b) Complete this inequality for the range of f(x).

Answer
$$\leqslant$$
 f(x) \leqslant (2 marks)

12 (c) You are given that $0 \le g(x) \le 1$ Work out the value of θ .

$$heta =$$
 degrees (1 mark)

13 (a)	Show that	$\frac{4}{x} + \frac{2}{x-1}$	simplifies to	$\frac{6x-4}{x(x-1)}$	
					(2 marks)
13 (b)	Hence, or other	erwise, solve	$\frac{4}{x} + \frac{2}{x-1} = 3$		
	Give your solu	tions to 3 signifi	cant figures.		
		Answer			(5 marks)

Turn over ▶

The value of x is 50% **more** than the value of t. The value of y is 10% **less** than the value of w.

x = y

Work out $\frac{t}{w}$

Give your answer as a decimal.

 $\frac{t}{w} = \dots$ (4 marks)

Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

(3 marks)

Do not write outside the box

16
$$y = (x^3 - 1)^2 + (\sqrt{x})^8$$

Work out $\frac{dy}{dx}$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots \tag{5 marks}$$

Turn over for the next question

15

Turn over ▶

17 $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ represents a reflection in the *y*-axis.

 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ represents a reflection in the line y = x

Work out the matrix that represents a reflection in the y-axis followed by a reflection in the line y=x

Answer (..... (2 marks)

18	Express	$1 - \tan\theta \sin\theta \cos\theta$	in terms of $\cos\theta$.	
		Answer	(3 ma	ırks)

19 A cubic function f(x) has domain $-4 \le x \le 4$

The curve y = f(x)

- has a minimum point at (-2, 0)
- has a maximum point at (1, 4)
- meets the *x*-axis at (4, 0).

Sketch the graph of y = f(x) on these axes. Label any points where the graph meets the x-axis.

(4 marks)

20	The area of this triangle is 18cm^2 .
	Not drawn accurately
	30° 2w
	Work out <i>y</i> .
	y = cm (5 marks)

21	Work out the equation of the normal to the curve $y = x^2 + 4x + 5$ at the point where $x = -3$
	Answer (5 marks)
22	$f(x) = x^3 + ax^2 + bx + 24$ for all values of x.
	Two of the factors of $f(x)$ are $(x-2)$ and $(x+3)$.
	Work out the values of a and b .
	$a = \dots \qquad b = \dots \qquad (5 \text{ marks})$

Turn over ▶

The diagram shows a cuboid *ABCDPQRS* and a pyramid *PQRSV*. *V* is directly above the centre, *X*, of *ABCD*.

The total height, VX, is 5 metres.

23 (a)	Work out the angle between the line VA and the plane ABCD.
	Answer degrees (4 marks)
	Answer degrees (4 marks)
23 (b)	Work out the angle between the planes <i>VQR</i> and <i>PQRS</i> .
23 (b)	Work out the angle between the planes VQ/V and VQ/Vo.
	Answer degrees (2 marks)
	Allower degrees (2 marks)

Turn over ▶

24	Solve	3 cos ²	$\theta - 1 = 0$	for	0° ≤ θ ≤ 180°		
			Angwar			(/	l marka)
			Allswei			(4	· IIIaiks)

25	Here are two number machines.
	$ \begin{array}{c c} & Output \\ \hline & a \\ \hline & & \times k \\ \hline & b \\ \hline \end{array} $
	$ \begin{array}{c c} & \text{Output} \\ \hline & a+2 \\ \hline & \times 3 \\ \hline & b+2 \\ \hline \end{array} $
	Work out a in terms of k .
	$a = \dots $ (6 marks)

END OF QUESTIONS

