Jan 2005

1.	Α	В	C	D	E	F
	5	3	2	8	60	
		}				15

2a)		19	3	7		2		5	15
	P1:	3	7	19	2	6	5	15	(20)
	P2:	3	7	2	6	5	15	(19)	(20)
	P3:	3	2	6	5	7	(15)	(19)	20
	P4:	2	3	5	6	7	(15)	(19)	20
	P5:	$\binom{2}{2}$	3	(5)	6	(7)	(15)	(19)	(20)

b) Comparisons: 8-1=7

Swaps: (see above) = 6

$$AD + FI = 14 + 14 = 28$$

 $AF + DI = 14 + 13 = 27$
 $AI + DF = 11 + 17 = 28$

$$87 + 27 = 114$$
 miles

ABDGIHFCACFEIEDEA

$$(D-9)+(C-8)+(A-7)$$

6 [Figure 1, printed on a separate sheet, is provided for use in this question.]

A theme park is built on two levels. The levels are connected by a staircase. There are five rides on each of the levels. The diagram shows the ten rides: A, B, \dots, J . The numbers on the edges represent the times, in minutes, taken to travel between pairs of rides.

- (a) Use Dijkstra's algorithm on Figure 1 to find the minimum time to travel from A to J.

 (6 marks)
- (b) A new staircase is built connecting rides B and G. The time taken to travel from B to G using this staircase is x minutes, where x is an integer. The time taken to travel from A to G is reduced, but the time taken to travel from A to J is not reduced.

Find two inequalities for x and hence state the value of x.

(4 marks)

AG=25 AB=5
$$\chi < 20$$
 $A \rightarrow B \rightarrow G \rightarrow H \rightarrow J$
50 BG must $5 + \chi + 3 + 3 \gg 30$
be less than 20 $\chi + 11 \gg 30$
 $\chi > 19$

ii)
$$A \rightarrow C \rightarrow D \rightarrow F \rightarrow B \rightarrow E \rightarrow A$$

6 7 5 8 13 12 = 51

b) DF 5

$$CD$$
 7

 BF 8

 FF 11

 SF 13

8a) Time to make:
$$4x + 2y \le 4 \times 5 \times 60$$

 $4x + 2y \le 1200$
 $2x + y \le 600$ as required

b)
$$2x+y \le 600$$

 $x \ge 40$ $y \ge 40$
 $x+y \ge 120$
 $x+y \le 400$
 $P = 3x + y$

d) maximum at
$$(280,40)$$
 $P = 3(280) + 40 = £880$
 $P = 2x + 2y$ maximum at $(200,200)$ eg $P = 2(200) + 2(200) = £800$
through to $(40,360)$

