Centre Number		Candidate Number	
Surname			
Other Names	_		
Candidate Signature	WRITTEN	SOLUTIONS	

General Certificate of Education Advanced Subsidiary Examination June 2015

Mathematics

MPC1

For Examiner's Use

Examiner's Initials

Mark

Question

1

2

3

4

5

6

7

8

TOTAL

Unit Pure Core 1

Wednesday 13 May 2015 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You must not use a calculator.

Time allowed

1 hour 30 minutes

Instructions

- · Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is **not** permitted.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may guote formulae, without proof, from the booklet.
- · You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 The line AB has equation 3x + 5y = 7.

Find the gradient of AB. (a)

[2 marks]

Find an equation of the line that is perpendicular to the line AB and which passes (b) through the point $(-2,\ -3)$. Express your answer in the form px+qy+r=0 , where p, q and r are integers.

[3 marks]

The line AC has equation 2x - 3y = 30. Find the coordinates of A. (c)

[3 marks]

PART	Answer space for question 1
ERENCE	
la)	needs to be in Lorm
	y = M x + C
	M-7 gradient
	c - y intercept
	3x + 5y = 7
	5y = -3x + 7
	$y = -\frac{3}{5} x + \frac{7}{5}$
	gradient is -3
٤)	perpendicular gradient -> 5 (M)
	(00 cdinat → (-2, -3) (x, y.)
	$y-y_1 = M(x-x_1)$
	$y + 3 = \frac{5}{3}(x + 2)$
	3y + 9 = 5x + 10

QUESTION PART REFERENCE	Answer space for question 1
c.).	
	3x + 5y = 7 O(x3)
	2x - 3y = 30 @ (x5)
	9x + 15y = 21
	+ 10x - 15y = 150
	19x = 171 (÷19)
	DC = 9 -1 sub in to find y into equation (
	3(9) + 54 = 7
	•
	27 + 5y = 7
	5y = -20
	y = -4
	(9 -1-)
	: point A is (9,-4)
	······································
	*
* * * * * * * * * * * * * * * * * * * *	
• • • • • • • • • • • • • • • • • • • •	
* * * * * * * * * * * * * * * * * * * *	

2	The point P has coordinates $(\sqrt{3}, 2\sqrt{3})$ and the point Q has coordinates $(\sqrt{5}, 4\sqrt{5})$.
	Show that the gradient of PQ can be expressed as $n + \sqrt{15}$, stating the value of the
	integer n. [5 marks]

QUESTION	Answer space for question 2
PART REFERENCE	
	$M = y_2 - y_1 \qquad \left(\begin{array}{c} \chi_1 \\ \sqrt{3}, 2\sqrt{3} \end{array} \right)$
	$\frac{\chi_1}{\chi_1-\chi_1} = \left(\frac{\chi_1}{\sqrt{5}}, \frac{\chi_2}{4\sqrt{5}}\right)$
	$M = 4\sqrt{5} - 2\sqrt{3}$
	JZ - JZ
	= (45 5 -253) ×(55+53)
	(JE-J3) (JE+J3)
	= 4525 + 4515 - 2515 - 259
	125 - JIS + JIS - J9
	$= 5 \times 4 + 2 \sqrt{15} - 2 \times 3$
	5-3
	= 20 + 2515 - 6
	2
	= 14+2515
	2
ļ	= 7 + JIS
	4

3 The diagram shows a sketch of a curve and a line.

The curve has equation $y = x^4 + 3x^2 + 2$. The points A(-1, 6) and B(2, 30) lie on the curve.

(a) Find an equation of the tangent to the curve at the point A.

[4 marks]

(b) (i) Find $\int_{-1}^{2} (x^4 + 3x^2 + 2) dx$.

[5 marks]

(ii) Calculate the area of the shaded region bounded by the curve and the line AB. [3 marks]

QUESTION PART REFERENCE	Answer space for question 3
3a)	equation of tangent: - need - gradient (dy)
Andrew Property American	-> (oordinate (A)
	$y = x^4 + 3x^2 + 2$
	$y = \chi^4 + 3\chi^2 + 2$ $dy = 4\chi^3 + 6\chi$
	The state of the s
	when $x = -1$
	$dy = 4(-1)^{3} + 6(-1)$
	dx = -4 - 6 x, y
	= -10 (M) (-1,6)

QUESTION PART REFERENCE	Answer space for question 3
	$y-y_1 = M(x-x_1)$
	y-6=-10(x+1)
	y - 6 = -10x - 10
	y = -10x - 4
Li)	$\int_{-1}^{2} \left(\chi^4 + 3\chi^2 + 1 \right) d\chi$
	$\int \frac{x^{5} + 3x^{3} + 1x}{5}$
	5
	$\int \frac{\chi^5}{5} + \chi^3 + 7\chi^2$
	$\left(\frac{(2)^{5}}{5} + (1)^{3} + 2(1)\right) - \left(\frac{(-1)^{5}}{5} + (-1)^{3} + 2(-1)\right)$
	$\left(\frac{32}{5} + 8 + 4\right) - \left(-\frac{1}{5} + -1 - 2\right)$
•••••	
	$\left(\frac{32+12}{5}\right)-\left(-3\frac{1}{5}\right)=\frac{32+12+3\frac{1}{5}}{5}$
•••••	= 62/5+12+31/5
	= 213/5
Ćń.	shaded area = area of traperion - area under curve
	are of trapection = $6+30\times3=54$
	shaded area = 54 - 21315
	$= 32^{2}/5$
	3 × / 3
•••••	Turn over ▶

4	A circle with centre	C has equation	$x^2 + y$	$y^2 + 2$	2x - 6y -	40=0.

(a) Express this equation in the form

$$(x-a)^2 + (y-b)^2 = d$$

[3 marks]

(b) (i) State the coordinates of C.

[1 mark]

(ii) Find the radius of the circle, giving your answer in the form $n\sqrt{2}$.

[2 marks]

- (c) The point P with coordinates (4, k) lies on the circle. Find the possible values of k. [3 marks]
- (d) The points Q and R also lie on the circle, and the length of the chord QR is 2. Calculate the shortest distance from C to the chord QR.

[2 marks]

PART EFERENCE	Answer space for question 4
40)	$\chi^{2} + y^{2} + 2\chi - 6y - 40 = 0$ $\chi^{2} + 2\chi + y^{2} - 6y - 40 = 0$
	$\chi^2 + 2\chi + y^2 - 6y - 40 = 0$
	$(x+1)^{2}-1+(y-3)^{2}-9-40=0$
	$(x+1)^{2}-1+(y-3)^{2}-9-40=0$ $(x+1)^{2}+(y-3)^{2}-50=0$
	$(x+1)^2 + (y-3)^2 = 50$
6	C = (-1, 3)
And the second s	
ii) (2 = 50
	r = 550
	r = JZI x JZ
	r = 552

QUESTION PART REFERENCE	Answer space for question 4
د)	P(4, k)) = 4 y= k - sub into circle
	$(4)^{1} + k^{2} + 2(4) - 6k - 40 = 0$
	16 + k ² + 8 - 6k - 40 = 0 k ² - 6k - 16 = 0
	(k-8)(k+2)=0 k=8 or k=-2
d)	Ç
	χ χ χ χ χ χ χ χ
	$\chi^2 = (\sqrt{30})^2 - 1^2$
	$3c_1 = 20 - 1$
	$\chi = \sqrt{49}$ $\chi = 7$

- **5 (a)** Express $x^2 + 3x + 2$ in the form $(x + p)^2 + q$, where p and q are rational numbers. [2 marks]
 - (b) A curve has equation $y = x^2 + 3x + 2$.
 - (i) Use the result from part (a) to write down the coordinates of the vertex of the curve.

 [2 marks]
 - (ii) State the equation of the line of symmetry of the curve.

[1 mark]

(c) The curve with equation $y = x^2 + 3x + 2$ is translated by the vector $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Find the equation of the resulting curve in the form $y = x^2 + bx + c$.

[3 marks]

QUESTION PART REFERENCE	Answer space for question 5
Sa)	$\chi^2 + 3\chi + 2$
	$()(+\frac{3}{2})^2 - \frac{9}{4} + 2$ $(2 = \frac{8}{4})$
	$(x+\frac{3}{2})^2-\frac{1}{4}$ OR $(x+1.5)^2-0.25$
Pi)	$(-\frac{3}{12}, -\frac{1}{4})$ or $(-1.5, -0.25)$
i)	$\chi = -\frac{3}{2} \sum_{QR} \chi = -1.5$
c)	translation (2) Means 2 right, 4 up
	Replace X win 'x-2', ner '+4'
	$y = (x-2)^{2} + 3(x-2) + 2 + 4$ $y = x^{2} - 4x + 4 + 3x - 6 + 6$
<u></u>	y= χ²-χ+4

The diagram shows a cylindrical container of radius $r \, \text{cm}$ and height $h \, \text{cm}$. The container has an **open** top and a circular base.

The **external** surface area of the container's curved surface and base is $48\pi\,\mathrm{cm}^2$. When the radius of the base is $r\,\mathrm{cm}$, the volume of the container is $V\,\mathrm{cm}^3$.

(a) (i) Find an expression for h in terms of r.

[3 marks]

(ii) Show that $V=24\pi r-\frac{\pi}{2}r^3$.

[2 marks]

(b) (i) Find $\frac{\mathrm{d}V}{\mathrm{d}r}$.

[2 marks]

(ii) Find the positive value of r for which V is stationary, and determine whether this stationary value is a maximum value or a minimum value.

[4 marks]

QUESTION PART REFERENCE	Answer space for question 6
6)	external surface area = base + curved S.A.
	CURRED TOTA L TITE + 2TTCh
	(miles base
	$50 ext{ } ext{T} ext{1}^2 + 2\pi r h = 48\pi$ $2\pi r h = 48 - \pi r^2$
	$A = 48\pi - \pi r^2 = 48 - r^2$ $2\pi r$

QUESTION PART REFERENCE	Answer space for question 6
ĵi)	$V = \pi r^{2} \left(\frac{1}{2r} \right) \left(\frac{1}{2r} \left(\frac{1}{2r} \right) \left(\frac{1}{2r} \right) \right)$
A PARTICIPATION AND AND AND AND AND AND AND AND AND AN	$V = \pi (^{2} (48 - (^{2}))$
	$V = \pi r^2 \left(\frac{48 - r^2}{2r} \right)$
	$= \pi r \left(\frac{48 - r^2}{2}\right)$
	$= \pi r \left(24 - r^2\right)$
	$V = 24\pi r - \pi r^3$ (as required)
bi).	$\frac{dV}{dr} = 24\pi - 3\pi r^2$
<i>ii)</i>	when V is stationary - dV = 0
	$24\pi - 3\pi r^2 = 0$
	$24\pi = \frac{3\pi r^2}{2} \left(\div \sqrt[3]{2\pi} \right)$
	48TT = p2
	3π r² = 16
	<u>r = 4</u>
	$\frac{d^2V}{dr^2} = \frac{-6\pi r}{2}, \text{then } r = 4, \frac{dV}{dr^2} = \frac{-6\times\pi\times4}{2}$
	div (0 VI) a Maximum value Turn over

7 (a) Sketch the curve with equation $y = x^2(x-3)$.

[3 marks]

- (b) The polynomial p(x) is given by $p(x) = x^2(x-3) + 20$.
 - (i) Find the remainder when p(x) is divided by x-4.

[2 marks]

(ii) Use the Factor Theorem to show that x + 2 is a factor of p(x).

[2 marks]

(iii) Express p(x) in the form $(x+2)(x^2+bx+c)$, where b and c are integers.

[2 marks]

(iv) Hence show that the equation p(x) = 0 has exactly one real root and state its value. [3 marks]

OUESTION PART REFERENCE Answer space for	or question 7
7a) Crosses	y axis when χ=0:-
	y=01(0-3)
	y=0 (0,0)
Crosses)	axis when y=0:-
	0 = 1(2(2(-3))
	22 = 0 (houchos)
	-3=0
	X=3 (crosses)
	1·4
	3
/	

T	
QUESTION PART EFERENCE	Answer space for question 7
	$p(x) = \chi^{2}(x-3) + 20$
	p(4) = 42 (4-3) + 20
	= 16(1) + 20
	= 76
	:. remainder is 36 when divided by (x-4)
ii)	p(-1) = (-2)2 (-2-3) +20
	= 4 (-5) +20
	= -20 + 20 = 0
	(X+2) is a factor of p(x)
	$\gamma + (\gamma - \gamma) + 2 \gamma - \gamma$
.iu)	$\chi^{1}(\chi-3)+20 \rightarrow \chi^{3}-3\chi^{1}+20$
	$(x+2)(ax^2+3x+c) = x^3-3x^2+20$
	$(x+2)(x^2+bx+c)$
	2c=20 10 c=10
	$(\chi+1)(\chi^2+6\chi+10)$
	$max^{2} + 36x^{2} = -3x$
	2 18 + 36 = - 3
	36 = - S
	$(\chi+2)(\chi^2-5\chi+10)$ (or divition)
iv)	$(\chi + 2)(\chi^2 - 5)(+10) = 0$
,	$\chi = -2$ or $\chi^2 - 5\chi + 10 = 0$
	$\alpha=1, \beta=-5, c=10$
	7 no solution, b -4ac (0
	$(-5)^2 - 4(1)(10) = 25 - 40 = -15$
	(-3) = ((1)((0) - 2) + 40 Turn over

-. only real root is X =-2

- 8 A curve has equation $y = x^2 + (3k 4)x + 13$ and a line has equation y = 2x + k, where k is a constant.
 - (a) Show that the *x*-coordinate of any point of intersection of the line and curve satisfies the equation

$$x^2 + 3(k-2)x + 13 - k = 0$$

[1 mark]

- (b) Given that the line and the curve do not intersect:
 - (i) show that $9k^2 32k 16 < 0$;

[3 marks]

(ii) find the possible values of k.

[4 marks]

QUESTION PART REFERENCE	Answer space for question 8
8a)	y= x2 + (3k-4)x + 13 intersects y= 2x + k
•••••••	$2\pi + k = \chi^2 + (3k - 4)\chi + 13$
	$\chi^2 + (3k-4)\chi - 2\chi + 13 - k = 0$
	$\chi^{2} + 3(k-2)\chi + 13 - k = 0$ (as required)
	WOM 3KX-6X-1(3K-6)X
6)	
	50 b2-4ac (0
	$\alpha = 1, b = 3(k-7), c = 13-k$
	$(7k-6)^2-4(1)(13-k)$ (0
	(3k-6)(3k-6)-4(13-k)(0
	9k2-18k-18k+36-52+4kCO
	9k2 - 32k - 16 (0 (as required)

QUESTION PART REFERENCE	Answer space for question 8
ii)	9k² - 32k - 16
	(9k+4)(k-4)
• • • • • • •	9k + 4 = 0 $k - 4 = 0$
*	k = -4/9 1c = 4 (crossee x axis)
	19
•••••	
	-/1) X
······	-4/9
	9 k²-32k-16 <0 : graph below
	Xaxis
	$-\frac{4}{9}$ < k < 4
	×

Turn over ▶