Centre Number	Candidate Number
Surname	
Other Names	
Candidate Signature	WRITTEN SOLUTIONS

General Certificate of Education Advanced Subsidiary Examination June 2013

Mathematics

MPC1

For Examiner's Use

Examiner's Initials

Mark

Question

1

2

3

4

5

6

7

TOTAL

Unit Pure Core 1

Monday 13 May 2013 1.30 pm to 3.00 pm

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You must not use a calculator.

Time allowed

1 hour 30 minutes

Instructions

- · Use black ink or black ball-point pen. Pencil should only be used for
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand
- · You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- · Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- · Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is **not** permitted.

Information

- · The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may guote formulae, without proof, from the booklet.
- · You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 The line AB has equation 3x - 4y + 5 = 0.

- (a) The point with coordinates (p, p + 2) lies on the line AB. Find the value of the constant p. (2 marks)
- (b) Find the gradient of AB.

(2 marks)

- The point A has coordinates (1, 2). The point C(-5, k) is such that AC is perpendicular to AB. Find the value of k. (3 marks)
- (d) The line AB intersects the line with equation 2x 5y = 6 at the point D. Find the coordinates of D. (3 marks)

QUESTION PART REFERENCE	Answer space for question 1
1a)	3x - 4y + 5 = 0
	$x = \rho$, $y = \rho + 2 \rightarrow Sub in$
	3p - 4(p+2) + 5 = 0
	,
	3p - 4p - 8 + 5 = 0
	-p - 3 = 0
	p=-3
1)	72 / 15:0
6)	_
	4y = 3x +5 (+4)
	$y = \frac{3}{4}x + \frac{5}{4}$
	1 > - 2
	gradient is 3

QUESTION PART REFERENCE	Answer space for question 1	
(ر)	gradient $AB = \frac{3}{4}$	
	4	
	perpendicular gradient = -4	
		Y 2 +4
	gradient = $y_2 - y_1$ (1,2)	(-5, k)
	$\chi_1 - \chi_1$	
	$\frac{-4}{3} = \frac{k-2}{1}$	
	3 - 5-1	
	$\frac{-4}{7} \approx \frac{k-2}{-6}$	
	24 = 3(k-2)	
	24 = 3k - 6	
	3k = 30	
	<u>k = 10</u>	
ا	Al -1 720 / 45 = 0	
Q.).	AB - 1 3x - 4y + 5 = 0 3x - 4y = -5 (x 5)	
	2x - 5y = 6 (x4)	
	15x - 20y = -25	
	- 8x - 20y = 24	
	7) = -49	
	25=-7, → Jubin	2(-7)-54=6
		-14-5y=6
	(-7, -4) - D.	-5y = 20
L		G = - 4 Turn over ▶

2 (a) (i) Express $\sqrt{48}$ in the form $n\sqrt{3}$, where *n* is an integer. (1 mark)

(ii) Solve the equation

$$x\sqrt{12} = 7\sqrt{3} - \sqrt{48}$$

giving your answer in its simplest form.

(3 marks)

(b) Express $\frac{11\sqrt{3} + 2\sqrt{5}}{2\sqrt{3} + \sqrt{5}}$ in the form $m - \sqrt{15}$, where m is an integer. (4 marks)

QUESTION	Answer space for question 2
PART REFERENCE	Allower space for question 2
2ai)	$\sqrt{48} = \sqrt{16} \times \sqrt{3}$
	= 1. [3
	= 453
	C - 26 E
11)	$\chi \sqrt{12} = 7\sqrt{3} - \sqrt{48}$
repair transference	$x\sqrt{12} = 7\sqrt{3} - 4\sqrt{3}$
	$\mathcal{I}(\sqrt{12} = 3\sqrt{3})$
•••••	
	X X V4 X J3 = 3 J3
	$\chi \times 2 \times \sqrt{3} = 3\sqrt{3}$
	2x \3 3\3
****	2x = 3
	$\chi = \frac{3}{2}$

QUESTION PART REFERENCE	Answer space for question 2
6)	(1153 + 255) x (253-55)
	$(2\sqrt{3}+\sqrt{5}) \qquad (2\sqrt{3}-\sqrt{5})$
• • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	2259 -11515 + 4515 - 2525
	459 - 2515 + 2515 - 525
	22×3 - 7JIS - 2×S
	4 x 3 - 5
	66 - 7515-10
••••	12-5
	56 - 7515
	7
	8-515 M=8

3 A circle C has equation

$$x^2 + y^2 - 10x + 14y + 25 = 0$$

(a) Write the equation of C in the form

$$(x-a)^2 + (y-b)^2 = k$$

where a, b and k are integers.

(3 marks)

- (b) Hence, for the circle C, write down:
 - (i) the coordinates of its centre;

(1 mark)

(ii) its radius.

(1 mark)

(c) (i) Sketch the circle C.

(2 marks)

(ii) Write down the coordinates of the point on C that is furthest away from the x-axis.

(2 marks)

(2 marks)

Given that k has the same value as in part (a), describe geometrically the transformation which maps the circle with equation $(x+1)^2 + y^2 = k$ onto the circle C. (3 marks)

QUESTION PART REFERENCE	Answer space for question 3
3a).	$\chi^2 - 10\chi + y^2 + 14y + 25 = 0$
	$x^{2} - 10x + y^{2} + 14y + 25 = 0$ $(x-5)^{2} - 25 + (y+7)^{2} - 49 + 25 = 0$
	$(x-5)^{2} + (y+7)^{2} - 49 = 0$ $(x-5)^{2} + (y+7)^{2} = 49$
	$(x-5)^2 + (y+7)^2 = 49$
bi)	centre is (5, -7)
ii)	(2 = 49
	r = 7

QUESTION PART REFERENCE	Allower space for question 5	
	17	
ci))	
• • • • • • • • • • • • • • • • • • • •		
		, X
* * * * * * * * * * * * * * * * * * * *		2
	-4	
		<u> </u>
	(-	5,-7)
	×	(5,-14)
ii)) Furthest point (5,-1	4)
d)) K = 49	
	. Sune size circle of rac	181 7
	cestre is (-1,0)	
	Tom Haking	/ \
	Translation (-	7)
	\	

Λ	(a)	The polynomial	f(r) is	given hy	$f(x) = x^3$	-4x + 15
4	(a)	The polyholinai	$I(\lambda)$ 15	given by	$I(\lambda) - \lambda$	4x 13

- (i) Use the Factor Theorem to show that x + 3 is a factor of f(x). (2 marks)
- (ii) Express f(x) in the form $(x+3)(x^2+px+q)$, where p and q are integers. (2 marks)
- (b) A curve has equation $y = x^4 8x^2 + 60x + 7$.
 - (i) Find $\frac{dy}{dx}$. (3 marks)
 - (ii) Show that the x-coordinates of any stationary points of the curve satisfy the equation

$$x^3 - 4x + 15 = 0 (1 mark)$$

- (iii) Use the results above to show that the only stationary point of the curve occurs when x = -3. (2 marks)
- (iv) Find the value of $\frac{d^2y}{dx^2}$ when x = -3. (3 marks)
 - (v) Hence determine, with a reason, whether the curve has a maximum point or a minimum point when x = -3. (1 mark)

QUESTION PART REFERENCE	Answer space for question 4
4ai)	$L(x) = x^3 - 4x + 15$
	$(-3) = (-3)^3 - 4(-3) + 15$
	=-27 + 12 + 15
	=0 : (x+3) is a factor of f(x)
	, , , , , , , , , , , , , , , , , , , ,
ii)	$\chi^2 - 3\chi + 5$
	$\chi + 3 \chi^3 + 0 \chi^2 - 4 \chi + 15$
	$-\chi^{3} + 3\chi^{2}$ (x+3)(χ^{2} -3x+5)
	$0 - 3x^2 - 4x$
	$-3\chi^2-9\chi$
	0 +52+15
	EY I I

QUESTION PART REFERENCE	Answer space for question 4
61)	$y = \chi^4 - B\chi^2 + 60\chi + 7$ $dy = 4\chi^3 - 16\chi + 60$
ii.)	dy =0 i/ stationary point
	$4x^{3} - 16x + 60 = 0$ (÷4) $x^{3} - 4x + 15 = 0$ (as required)
.ii.)	$(x+3)(x^{2}-3x+5)=0$ $x=-3 o x^{2}-3x+5=0 a=(,b=-3,c=5)$ $b^{2}-4ac \to (-3)^{2}-4(1)(5)$
	$\frac{9-20=-11}{b^2-4ac} < 0 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$
iv)	$\frac{dy}{dx} = 4x^{3} - 16x + 60$ $\frac{d^{2}y}{dx} = 12x^{2} - 16, \text{when } x = -3 = -\frac{1}{2}$ $\frac{d^{2}y}{dx^{2}} = 12(-3)^{2} - 16$ $\frac{d^{2}y}{dx^{2}} = 108 - 16 = 92$
.v)	dry >0 a minimum point

QUESTION PART EFERENCE	Answer space for question 4	
•••••		
•••••		
		56 1
		•
••••		•

Answer space for question 4	
REFERENCE	
	• • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

5 (a) (i)	Express $2x^2 + 6x + 5$	in the form	$2(x+p)^2 + q$, whe	ere p and q are ra	ational
	numbers.				(2 marks)

(ii) Hence write down the minimum value of $2x^2 + 6x + 5$. (1 mark)

(b) The point A has coordinates (-3, 5) and the point B has coordinates (x, 3x + 9).

(i) Show that $AB^2 = 5(2x^2 + 6x + 5)$. (3 marks)

(ii) Use your result from part (a)(ii) to find the minimum value of the length AB as x varies, giving your answer in the form $\frac{1}{2}\sqrt{n}$, where n is an integer. (2 marks)

PART FERENCE	Answer space for question 5
Sai)	2x² + 6x + 5
	$2\left(\chi^2 + 3\chi + \frac{5}{2}\right)$
	$2\left[\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{5}{2}\right]$
	$2\left(\left(\chi + \frac{3}{2}\right)^2 + \frac{1}{4}\right)$
•••••	$2(\chi + \frac{3}{2})^{2} + \frac{1}{2}$
ii)	minimum value is 1/2
5)	A(-3,5) $B(x,3x+9)$ (pyhagoras formula)
	$AB^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$ $AB^{2} = (x_{2} - x_{1})^{2} + (3x + 9 - 5)^{2}$
	$AB^2 = (X+3)^2 + (3X+4)^2$ ((3X+4)(3X+4)
	$AB^{2} = \chi^{2} + 6\chi + 9 + 9\chi^{2} + 24\chi + 16$ $AB^{2} = 10\chi^{2} + 30\chi + 25$

QUESTION PART EFERENCE	Answer space for question 5
'n.)	Minimum value of 2x2 + 6x + 5 is 1/2
	2 2 2 - (11)
	$AB^2 = 5(1/2)$
	$AB^2 = 5$
	$AB = \sqrt{\frac{5}{52}} = \sqrt{\frac{5}{52}} \left(\sqrt{\frac{5}{2}} \times \sqrt{\frac{5}{52}} \right)$
	$=\frac{1}{\sqrt{10}}=\frac{1}{2}\sqrt{10}$
	2 2
•••••	
•••••	

A curve has equation $y = x^5 - 2x^2 + 9$. The point P with coordinates (-1, 6) lies on the curve.

- (a) Find the equation of the tangent to the curve at the point P, giving your answer in the form y = mx + c. (5 marks)
- (b) The point Q with coordinates (2, k) lies on the curve.
 - (i) Find the value of k.

(1 mark)

(ii) Verify that Q also lies on the tangent to the curve at the point P.

(1 mark)

(c) The curve and the tangent to the curve at P are sketched below.

(i) Find $\int_{-1}^{2} (x^5 - 2x^2 + 9) dx$.

(5 marks)

(ii) Hence find the area of the shaded region bounded by the curve and the tangent to the curve at P. (3 marks)

QUESTION PART REFERENCE	Answer space for question 6
6a)	$y = x^{5} - 2x^{2} + 9$ $P(-1, 6)$
	$dy = 5x^4 - 4x$ when $x = -1$ $dy = 5(-1)^4 - 4(-1)$
	$d\hat{x} = 9$
	4 - 6 = 9(X + 1)
	y - 6 = 9x + 9
	y = 9x + 15

QUESTION PART REFERENCE	Answer space for question 6
	0 (2 1) 0 2 4
.bi.)	$Q(2,k) \chi=2, y=k$
	$y = 2^5 - 2(2)^2 + 9$
	= 32-8+9 = 33
<u>ii)</u>	Sub in $x = 2$ and $y = 33$ into
	y = 9x + 15
	33 = 9(2) +/5
	33 = 33 /
	. Q lies on the tangent
ci)	$\int_{1}^{2} (\chi^{5} - 2\chi^{2} + 9) d\chi$
	J-1
	$\left[\frac{\chi^6 - 2\chi^3 + 9\chi}{3}\right]_{-1}^2$
	$\left(\frac{2^{6}-2(2)^{3}+9(2)}{(-1)^{6}-2(-1)^{3}+9(-1)}\right)$
	$\frac{\left(64 - 16 + 18\right) - \left(\frac{1}{6} + \frac{2}{3} - 9\right) = 31.5}{6}$
ji.).	shaded region = traperium - cure
	$trupezium = 6 + 33 \times 3 = 117$
•••••	shaded = 117 - 63 = 54 = 27
	Turn over ▶

7 The quadratic equation

$$(2k-7)x^2 - (k-2)x + (k-3) = 0$$

has real roots.

Show that $7k^2 - 48k + 80 \le 0$. (a)

(4 marks)

(b	Find the possible values of k . (4 marks)
QUESTION PART REFERENCE	Answer space for question 7
7)	a = 2k - 7 $b = -(k-2)$ $c = k-3$
	= -k+2
a)	b2-4ac>0 y real roots
	$(-k+2)^2 - 4(2k-7)(k-3) > 0$
	$(-k+2)(-k+2) - 4(2k^2 - 6k - 7k + 21) \ge 0$
	$k^2 - 2k - 2k + 4 - 4(2k^2 - 13k + 21) \ge 0$
	$k^{2} - 4k + 4 - 8k^{2} + 57k - 84 \%0$ - $7k^{2} + 48k - 80 \gg 0$
	7k2-48k+80 < 0 (as reg)
5)	7k2-48k+8050
	$(7k - 20)(k - 4) \le 0$
	7k-20=0 $k-4=0$
	$k = \frac{20}{7}$ $k = 4$
	Ty graph is less
	(Below Xaxis)
	10/7 4 2 20/7 EK < 4

QUESTION PART REFERENCE	Answer space for question 7	
		STREET, SQUARE, SQUARE,
		-
nagan and a same and a same and a same and a same a sa		
ļ		

QUESTION PART REFERENCE	Answer space for question 7
•••••	
•••••	
	END OF QUESTIONS
Copyright © 2013 AQA and its licensors. All rights reserved.	

