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This paper describes a research and development project in teaching 
designed to examine whether and how it might be possible to bring the 
practice of knowing mathematics in school closer too what it means to 
know mathematics within the discipline by deliberately altering the roles 
and responsibilities of teacher and students in classroom discourse. The 
project was carried out as a regular feature of lessons in fifth-grade 
mathematics in a public school. A case of teaching and learning about 
exponents derived from lessons taught in the project is described and in- 
terpreted from mathematical, pedagogical, and sociolinguistic perspec- 
tives. To change the meaning of knowing and learning in school, the 
teacher initiated and supported social interactions appropriate to mak- 
ing mathematical arguments in response to students' conjectures. The 
activities students engaged in as they asserted and examined hypotheses 
about the mathematical structures that underlie their solutions to prob- 
lems are contrasted with the conventional activities that characterize 
school mathematics. 
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In the midst of an argument among his students about a theorem in 
geometry, the teacher in Lakatos's Proof and Refutations (1976) finds 

it appropriate to announce, "I respect conscious guessing, because it comes 
from the best human qualities: courage and modesty" (p. 30). Why does 
this teacher of mathematics think it appropriate to encourage conscious 
guessing and to celebrate the human virtues of courage and modesty? The 
answer is to be found in Lakatos's analysis of what it means to know mathe- 
matics and his ideas about how new knowledge develops in the discipline. 

In Proofs and Refutations, Lakatos portrays historical debates within 
mathematics about what the "proof" of a theorem represents by construct- 
ing a conversation among a group of students-fictional characters who 
voice the disagreements among mathematicians through the last several 
centuries, often using the mathematicians' own words. Lakatos's argument, 
which comes through in the person of the teacher, is that mathematics 
develops as a process of "conscious guessing" about relationships among 
quantities and shapes, with proof following a "zig-zag" path starting from 
conjectures and moving to the examination of premises through the use 
of counterexamples or "refutations." This activity of doing mathematics 
is different from what is recorded once it is done: "Naive conjecture and 
counterexamples do not appear in the fully fledged deductive structure: 
The zig-zag of discovery cannot be discerned in the end product" (Lakatos, 
1976, p. 42). The product of mathematical activity might be justified with 
a deductive proof, but the product does not represent the process of com- 
ing to know. Nor is knowing final or certain, even with a proof, for the 
assumptions on which the proof is based-which mathematicians call 
axioms-continue to be open to reexamination in the mathematical com- 
munity of discourse. I t  is this vulnerability to reexamination that allows 
mathematics to grow and develop. 

Mathematics has grown and changed over time, in Lakatos's view, 
not because the conclusions that are derived from axioms are the result 
of faulty logic, but because the axioms and definitions from which the 
logical argument begins are themselves open to revision as they are ex- 
amined in the community of discourse. The need for revisions does not 
become obvious, however, until one engages in the process of proof and 
discovers the shortcomings of one's assumptions. The insufficiencies of 
the original assumptions come to be recognized as one tries to pursue the 
logical consequences rather than before the fact: Refutations of the con- 
clusions, often in the form of counterexamples, suggest revisions to the 
assumptions. Lakatos demonstrated that this zig-zag between revising con- 
clusions and revising assumptions in the process of coming to know oc- 
curred both in the work of individual mathematicians as they exposed 
their work to their colleagues and over time as conclusions that had been 
unquestioned in the past were reconsidered. His interpretation of 
mathematical knowing is an attempt to place the discipline in historical 
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perspective and to highlight the human activity of doing mathematics (see 
also Tymoczko, 1985). 

From the standpoint of the person doing mathematics, making a con- 
jecture (or what Lakatos calls a "conscious guess") is taking a risk; it re-
quires the admission that one's assumptions are open to revision, that one's 
insights may have been limited, that one's conclusions may have been in- 
appropriate. Although possibly garnering recognition for inventiveness, 
letting other interested persons in on one's conjectures increases personal 
vulnerability. Courage and modesty are appropriate to participation in 
mathematical activity because truth remains tentative, even as the proof 
of a conjecture evolves. 

Polya (1954) also thought courage and modesty to be essential to the 
activity of acquiring mathematical knowledge. He asserted that the doer 
of mathematics must assume "the inductive attitude" and be willing to 
question both observations and generalizations, playing them off one 
another in a form similar to what Lakatos called the zig-zag path from con- 
jecture to proof and back to axioms. Folya asserted: 

In our personal life we often cling to illusions. That is we do not 
dare to examine certain beliefs which could be easily contradicted 
by experience, because we are afraid of upsetting the emotional 
balance. There may be circumstances in which it is not unwise to 
cling to illusions, but [in doing mathematics]. . . w e  need to adopt 
the inductive attitude [which] requires a ready ascent from obser- 
vations to generalizations, and a ready descent from the highest 
generalizations to the most concrete observations. It requires say- 
ing "maybe" and "perhaps" in a thousand different shades. It 
requires many other things, especially the following three: 

INTELLECTUAL COURAGE: 	 we should be ready to revise 
any one of our beliefs. 

INTELLECTUAL HONESTY: 	 we should change a belief 
when there is a good reason to 
change i t .  . . 

WISE RESTRAINT: 	 we should not change a belief 
wantonly, without some good 
reason, without serious exam- 
ination. (pp. 7-8) 

Polya called these the "moral qualities" required to do  mathematics. He 
recognized that examining one's assumptions is an emotionally risky 
matter, but like Lakatos, he claimed that it was essential to doing good 
mathematics. 

Coming to Know Mathematics in School 

The ideals that Lakatos and Polya espouse in their writing about mathe- 
matical practice contrast rather sharply with the way in which knowing 
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mathematics is viewed in popular culture and in most classrooms.' Com- 
monly, mathematics is associated with certainty: knowing it, with being 
able to get the right answer, quickly (Ball, 1988; Schoenfeld, 1985a; Stodol- 
sky, 1985). These cultural assumptions are shaped by school experience, 
in which doing mathematics means following the rules laid down by the 
teacher; knowing mathematics means remembering and applying the cor- 
rect rule when the teacher asks a question; and mathematical truth is deter- 
mined when the answer is ratified by the teacher. Beliefs about how to 
do mathematics and what is means to know it in school are acquired 
through years of watching, listening, and practicing. 

Comparing School Mathematics with Knowledge in the Discipline 

The issue of intellectual authority is central to this comparison between 
how mathematics is known in school and how it is known in the discipline. 
In the classroom, the teacher and the textbook are the authorities, and 
mathematics is not a subject to be created or explored. In school, the truth 
is given in the teacher's explanations and the answer book; there is no 
zig-zag between conjectures and arguments for their validity, and one could 
hardly imagine hearing the words maybe or perhaps in a lesson. Know- 
ing mathematics in school therefore comes to mean having a set of unex- 
amined beliefs, whereas Lakatos and Polya suggest that the knower of 
mathematics needs to be able to stand back from his or her own knowl- 
edge, evaluate its antecedent assumptions, argue about the foundations 
of its legitimacy, and be willing to have others do the same. 

Teachers tell students whether their answers are right or wrong, but 
few teachers engage students in a public analysis of the assumptions that 
they make to get their answers. Even when teachers give an explanation 
rather than simply stating a rule to be followed, they do not invite students 
to examine the mathematical assumptions behind the explanation, and it 
is unlikely that they do so themselves (Ball, in press; Stein & Baxter, 1989). 
In conventional mathematics lessons, students believe that the teacher 
knows which answers are right, and teachers believe that the paths to these 
answers can be found in rules in books; examining these beliefs, in Polya's 
words, "can upset the emotional balance" in both teachers and students 
(Cooney, 1987). That teachers and students think this way about mathe- 
matical knowledge and how it is acquired is both a cause and a logical 
consequence of the ways in which knowledge is regarded in school mathe- 
matics lessons. 

At the same time, educational reformers are working on a very differ- 
ent set of assumptions about what mathematical knowledge is and how 
it might be acquired (Mathematical Sciences Education Board [MSEB], 1989, 
National council of Teachers of Mathematics [NCTM], 1989). At every level 
of schooling, and for all students, reform documents recommend that 
mathematics students should be making conjectures, abstracting mathe- 
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matical properties, explaining their reasoning, validating their assertions, 
and discussing and questioning their own thinking and the thinking of 
others. These activities do  not fit within the tasks that currently define 
mathematics lessons. Moreover, they require both teachers and students 
to think differently about the nature of mathematical knowledge. Little 
research has examined what the intellectually generative sort of mathe- 
matical activities espoused by NCTM or MSEB might look like in classrooms 
or the role that the classroom culture plays in the social construction of 
a view of mathematical knowledge; studies of this sort are needed if we 
are to understand what it will take to transform discipline-derived stan- 
dards into school practice (NCTM, 1988). 

Must There Be This Disjunction? 

Many analysts suggest that school mathematics is the way it is rather than 
being like knowing in the discipline because of the sorts of institutions 
that schools are and because of the relationship that exists between schools 
and other social institutions (e.g., Cuban, 1984; Sarason, 1971). This essay 
is a description of a research and development project in mathematics 
teaching designed to explore whether it might be possible to produce 
lessons in which public school students would exhibit-in the classroom- 
the qualities of mind and morality that Lakatos and Polya associate with 
doing mathematics. My role in this project has been to develop and imple- 
ment new forms of teacher-student interaction as well as to experiment 
with new forms of content as a teacher of fifth-grade mathematics. I have 
taught fourth- and fifth-grade mathematics during the past 6 years, collect- 
ing data on both teaching and learning during 3 of those years.2 The 
teaching practice that produced the data was constructed to be congruent 
with ideas about what it means to do mathematics in the discipline. 

The findings of this research and development project will be pre- 
sented here in terms of a story about learning about knowing mathematics 
in the social setting of the classroom. The end of the story will be told 
first by describing the activity of a class of fifth graders who seem to have 
learned to do mathematics together in a way that is consonant with 
Lakatos's and Polya's assertions about what doing and knowing mathe- 
matics entails. The evidence for this shift in the social norms away from 
conventional classroom discourse patterns will be presented in the form 
of an exhibit of what students are able and inclined to do with their teacher 
and with one another in the social context of a lesson. The students are 
courageous and modest in making and evaluating their own assertions and 
those of others, and in arguing about what is mathematically true; they 
move around in their thinking from observations to generalizations and 
back to observations to refute their own ideas and those of their class- 
mates. While they are learning mathematics, these students are also learn- 
ing, tacitly if not explicitly, to place mathematics appropriately in the lexi- 
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con of ways of knowing. Their activity suggests that they are operating 
with quite a different set of beliefs about what doing mathematics means 
than those held by other fifth graders in similar school settings (Stodolsky, 
1988). In acting on what they believe about the relationship between the 
knower and what is known, they put themselves in the position of authors 
of ideas and arguments; in their talk about mathematics, reasoning and 
mathematical argument-not the teacher or the textbook-are the primary 
source of an idea's legitimacy. 

How Does One Learn What It Means to Know Mathematics? 

In addition to illustrating what students can learn about how to participate 
in the doing and learning of mathematics, the case study of teaching and 
learning that is the focus of this paper will also show how the teacher can 
act to create and maintain the culture in which such student activity can 
occur. This particular case was chosen to represent the mathematics lessons 
I have designed and taught because it illustrates several patterns of teacher 
and student interaction that can be shown to be common to almost every 
lesson over the entire school year. Research in educational anthropology 
suggests that the teacher can initiate such patterns to build a participa-
tion structure that redefines the roles and responsibilities of both teacher 
and students in relation to learning and knowing (Au &Jordan, 1980; Au 
& Mason, 1981). In the classroom, words such as know, think, revise, ex- 
plain, problem, and answer come to have meaning by being associated 
with particular kinds of activities. Who is responsible for doing the activi- 
ties associated with these words gets determined in interaction between 
the teacher and the students. The notion of a classroom participation struc- 
ture is taken from the work of Florio (1978) and Erickson and Shultz (1981). 
They define a participation structure to be the allocation of interactional 
rights and obligations among participants in a social event; it represents 
the consensual expectations of the participants about what they are sup- 
posed to be doing together, their relative rights and duties in accomplishing 
tasks, and the range of behaviors appropriate within the event.3 Teachers 
and students form communities of discourse that come to agree on work- 
ing definitions of what counts as knowledge and the processes whereby 
knowledge is assumed to be acquired (Cazden, 1988). 

When classroom culture is taken into consideration, it becomes clear 
that teaching is not only about teaching what is conventionally called 
content. I t  is also teaching students what a lesson is and how to participate 
in it (Florio, 1978; Jackson, 1968; Mehan, 1979). From the activities the 
teacher sets for them, students learn what counts as knowledge and what 
kind of activities constitute legitimate academic tasks (Cazden, 1988; Doyle, 
1985, 1986; Leinhardt & Putnam, 1987; Lemke, 1982; Palincsar & Brown, 
1984). Face-to-face interaction between students and their teacher follows 
context-specific rules, and cues within these contexts signal how what any- 
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one says is to be understood in relation to the task everyone is assembled 
to accomplish (Cazden, 1988; Mehan, 1979). The teacher has more power 
over how acts and utterances get interpreted, being in a position of social 
and intellectual authority, but these interpretations are finally the result 
of negotiation with students about how activity is to be regarded. 

To challenge conventional assumptions about what it means to know 
mathematics, then, teachers and students need to do different sorts of 
activities together, with different kinds of roles and responsibilities. In my 
interactions with students, I associated mathematically appropriate ac- 
tivities with words such as know, think, revise, explain, problem, and 
answer to initiate a redefinition of these activities, and I demonstrated to 
students what new roles and responsibilities -for them and for me-the 
new definitions entailed. The ideals that governed classroom interaction 
came to parallel the standards for argument in the mathematical community 
more closely, as truth came to be determined by logical argument among 
scholars (see Balacheff, 1987). 

The Description and Interpretation of Teaching Practice 

The data from which I will draw most heavily here is taken from one lesson 
on exponents that occurred in the latter part of the school year. The struc- 
ture of this lesson is representative of the task structure that characterized 
almost every lesson throughout the year. To put the events of this lesson 
in context, I will also draw on transcripts of lessons that occurred at other 
points throughout the year. After each part of the focal lesson is described, 
I will interpret aspects of my teaching from mathematical, pedagogical, 
and anthropological perspectives. 

The first cut on analyzing the events that transpired in these lessons 
occurred immediately after they were taught. Each day, I recorded de- 
tailed field notes on lessons, including descriptions of how lessons and 
units were planned and implemented and initial analyses of the planning 
process itself, the lessons as they were taught, and students' work. In these 
field notes, I began to develop a map of the mathematical terrain that was 
being traversed (i.e., the content of the curriculum) as I stimulated and 
responded to students' thinking about mathematical problems. I also 
reflected on the development of the classroom culture through the par- 
ticular social interactions that occurred each day. A second form of analysis 
occurred as lessons were considered and compared across the entire year. 
At this stage, mathematical and social patterns in the lessons and themes 
in the field notes were noted. Finally, the whole corpus and individual 
components of it were analyzed using theoretical frameworks drawn from 
mathematics and the social sciences. 

This approach to doing research on  teaching is unusual on  several 
counts. First, theory testing and the development of practice have been 
carried on simultaneously and interactively by the author. In this process, 
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the knowledge and dispositions associated with educational scholarship 
and the knowledge and dispositions associated with practical problem solv- 
ing in teaching are integrated in the reflective and practical actions of the 
same person, and only later disentangled for analysis. Second, the prac- 
tice and the analysis of practice draw on both familiar social science ap- 
proaches to educational research and the epistemological arguments that 
characterize the subject being taught. Mathematical notions about what 
constitutes knowledge are considered in concert with frameworks drawn 
from the sort of generic study of knowledge acquisition that has character- 
ized research on teaching and learning. Third, the practice under study 
is deliberatively transformative (Silver, in press). What is presented is a 
kind of "existence proof" that certain kinds of knowing and learning are 
possible in the school setting under ordinary conditions: average class size, 
heterogeneously grouped and diverse students, typical instructional time 
and space constraints, and so on. I am not a typical teacher, though; my 
educational background is different from that of most elementary teachers, 
my purpose is not only to teach but to examine teaching, and I teach 
elementary students only for one hour each day. By implication, an argu- 
ment is being made here that an approach that combines these unusual 
elements is appropriate to educational scholarship. 

Two methodological traditions have contributed to the design of this 
approach: action research and interpretive social science. The first has a 
long history and a wide currency as a way of relating research to teacher 
education in countries other than the United States (Elliot, 1987). Unlike 
conventional social science, the purpose of action research is not to derive 
new theories that can then be applied to reform practice, but to subject 
theory to the conditions of practice and examine practical action in a 
concrete situation so that theory and practice develop interactively. This 
approach to scholarship is particularly characteristic of settings in which 
teachers try to reform curriculum and instruction (Bissex & Bullock, 1987; 
Cazden, Diamondstone, & Naso, 1988, Florio-Ruane, 1988; Lovitt & Clarke, 
1988). 

The intellectual roots of current forms of action research in educa- 
tion are similar to the foundations from which interpretive social science 
is derived (Elliot, 1987; Rabinow & Sullivan, 1987). In interpretive social 
science, data are treated as text, and the enterprise is to understand its 
meaning. Analyzing the data is an attempt to untangle the tangled web 
of human activity in settings (like classrooms) where activity is carried on 
for purposes other than doing research (Geertz, 1973). This method of 
analysis is what is sometimes referred to as textual exigesis; those who 
use this method assume that there are multiple ways to interpret any action, 
and that the levels of meaning that can be found are confounded and some- 
times in conflict (Hammersly, 1979, Rorty, 1980; Taylor, 1979). This ap- 
proach fits with the observation that teaching is a task that involves manag- 
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ing multiple and often contradictory goals (Berlak & Berlak, 1981; Jackson, 
1968; Lampert, 1985; Lortie, 1975). The purpose of interpretive research 
is not to determine whether general propositions about learning or teaching 
are true or false but to further our understanding of the character of these 
particular kinds of human activity. A considerable body of interpretive 
research is beginning to accrue in education, but little of it has focused 
on the deliberate teaching of academic content (Cazden, 1988; 
Erickson, 1982). 

In action research, it is often the case that the investigator and the 
actor are the same person. This means that practical and theoretical reason- 
ing (Schwab, 1978) are difficult to distinguish, both in the practice and 
in the analysis of practice. In the case of this analysis, the teacher is both 
the inventor of actions (in the teaching situation) and the analyst of actions 
(after the fact). Under these conditions, it is possible for the reader to con- 
fuse the post hoc justification and interpretation of lessons that are being 
offered here with what was in the mind of the teacher as the actions 
described were being carried out. The knowledge that is used to analyze 
teaching is not entirely the same as the knowledge that is used to teach. 
Teaching and the analysis of teaching are different practices requiring dif- 
ferent kinds of knowledge. It is important to clarify this distinction because 
of the potential implications of research for teacher education and evalua- 
tion: It should not be assumed that a teacher who understands the after- 
the-fact analysis in this essay will be disposed toward and capable of 
recreating the kinds of lessons that are described here. It would be useful 
and interesting to examine what kind of practical reasoning would be 
entailed in teaching the lessons that are described, but that is not the focus 
of the work reported here. 

We do not yet have a clear sense in the work of teaching about the 
role that theoretical analysis of practice can play in changing teacher's 
actions, although many speculations have been made about it (Elliot, 1989). 
Conventionally, the relationship between educational theory and knowl- 
edge use in teaching is construed as follows: Researchers derive theoretical 
propositions from empirical or analytical studies, and those propositions 
serve to support teacher's arguments about why one or another practice 
is more appropriate (Fenstermacher, 1986). This leads to the idea that more 
analysis and more empirical studies will result in the direct improvement 
of practice through the delivery of propositional knowledge to teachers 
and the evaluation of teacher thinking in terms of its congruence with 
theoretical assertions. But what we are beginning to learn about knowledge 
use in teaching (and expertise in similar fields) makes this an unrealistic 
expectation (see e.g., Bolster, 1983; Elliot, 1989; Isenberg, 1984; 
Shulman, 1986). 

In the analysis of practice, or even in planning lessons, one can look 
at what happened or imagine what might happen from one or another 
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coherent perspective, screening out the multiple and conflicting concerns 
that barrage the practioner. In practice, however, teachers often are choos- 
ing between two or more courses of action, each of which is sufficiently 
warranted, but any one of which might be in logical conflict with another 
(see Ball, 1988; Buchmann, 1988; Lampert, 1985). For example, theories 
of disciplinary knowledge might be applied to the planning or interpreta- 
tion of a lesson without simultaneous concern for equity or social interac- 
tion or individual psychology. To frame a logical argument that justifies 
a teaching practice, the complexity of practice must be sacrificed. This 
is not to say that teachers cannot benefit from the empirical study of teach- 
ing and learning or that they do not change their practice as a result of 
learning about conventional research findings (Florio-Ruane, 1988), only 
that analytical reasoning and practical reasoning are different and may result 
in different courses of action. Neither is it to say that teachers are illogical; 
teachers themselves do the sort of analytical reasoning that is reported 
here (albeit somewhat less extensively) when they are planning a lesson 
or explaining their teaching actions after the fact, but this thinking is not 
the same as the thinking they do as they interact with students and subject 
matter during a lesson (Clark & Peterson, 1986). 

Much attention currently is being given to the relationship between 
teachers' practical or strategic knowledge and the propositional knowledge 
that results from educational scholarship (see Kennedy, 1988; Shulman, 
1987; Valli & Tom, 1988). Much more needs to be learned about both 
kinds of knowledge and how they might be related in action. But in the 
meantime, we need to be careful not to equate theoretical justifications 
and post hoc interpretations of a lesson with a teacher's practical reasorl- 
ing, even when both are authored by the teacher. 

When the Problem Is Not the Question and the Solution 

Is Not the Answer: Inventing New Forms 


of Teacher-Student Interaction 


How does a teacher go about redefining the meaning of knowing mathe- 
matics? In the lesson I designed and enacted, I portrayed what I wanted 
students to learn about mathematical knowing both in how I constructed 
my role and in what I expected of the class. I gave them problems to do, 
but I did not explain how to get the answers, and the questions I expected 
them to answer went beyond simply determining whether they could get 
the solutions. I also expected them to answer questions about mathematical 
assumptions and the legitimacy of their strategies. Answers to problems 
were given by students, but I did not interpret them to be the primary 
indication of whether they knew matheniatics. In this interaction, the 
words knowing, revising, thinking, explaining, problem, and answer took 
on new meanings in the classroom context. 
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Students' Knowing as Conjecture and Proof 
In setting the topical agenda in any particular lesson-that is, in determining 
what the mathematical discourse was going to be about-my responsibility 
was to choose a problem or problems for discussion, and the students' 
responsibility was to express their interests, questions, and understandings 
within the domain of the problem. As it was realized during a discussion, 
the agenda evolved from a negotiation between the problems I set and 
the mathematics that students brought to working on those problems (cf. 
Steffe, 1988). The problems communicated predictable boundaries for the 
class discussion, enabling students to know what they are supposed to 
be doing and thinking about during the class period (cf. Leinhardt & 
Putnam, 1987). 

At the beginning of a unit, when we were switching to a new topic, 
the problem we started with was chosen for its potential to expose a wide 
range of students' thinking about a bit of mathematics, to make explicit 
and public what they could do and how they understand. Later problems 
were chosen based on an assessment of the results of the first and sub- 
sequent discussions of a topic, moving the agenda along into new but 
related mathematical territory. The most important criterion in picking 
a problem was that it be the sort of problem that would have the capacity 
to engage all of the students in the class in making and testing mathematical 
hypotheses. These hypotheses are embedded in the answers students give 
to the problem, and so comparing answers engaged the class in a discus- 
sion of the relative mathematical merits of various hypotheses, setting the 
stage for the kind of zig-zag between inductive observation and deduc- 
tive generalization that Lakatos and Polya see as characteristic of mathe- 
matical activity. In the class described below, for example, students 
asserted various hypotheses about how to figure out the last digit in 54, 
64, and 74 without m~l t ip ly ing.~  To push them to speculate on whether 
their hypotheses would hold in a larger domain, I then asked them to think 
about what the last digit would be in 75. Two competing hypotheses 
about how exponents work were revealed in their assertions about the 
last digit in 75. One student's assertion suggested that the fifth power 
would be obtained by squaring the fourth power. Other students hypoth- 
esized that the fifth power would be obtained by multiplying the fourth 
power by the base number (or first power). In arguing about whether the 
last digit in 75 was 1 or 7, the students were arguing about which of these 
hypotheses was an appropriate "law" to use in their further work with 
exponents. 

Problems like these are what Kilpatrick (1987), following Frederickson, 
calls "structured problems requiring productive thinking" (p. 134). Such 
problems imply criteria for testing the correctness of the solution, but they 
are not solved by the simple application of a known algorithm. This allows 
for multiple routes to a solution, and puts the solver in the position of 
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devising all or part of the solution procedure. The students' responsibility 
is figuring out how to solve the problem as well as finding the solution. 
It is the strategies used for figuring out, rather than the answers, that are 
the site of the mathematical argument, and it is these strategies that reveal 
the assumptions a student is making about how mathematics works. 

The intellectual problem for the students is to develop a mathemati- 
cally legitimate strategy for finding the answer to a question posed by the 
teacher. The content of the lesson is the arguments that support or reject 
solution strategies rather than the finding of answers. Students' strategies 
yield answers to teachers' questions, but the solution is more than the 
answer, just as the problem is more than the question. Generating a strategy 
and arguing for its legitimacy indicates what the student knows about 
mathematics. These are the activities of significance in the verbal and non- 
verbal communication between teacher and students. It is in this sense 
that "the problem is not the question and the answer is not the solution". 
This approach to teacher and students talking about the problem and its 
solutions is intended to communicate that what is important is develop- 
ing and defending strategies, making hypotheses, or what Lakatos calls 
"conscious guessing,"and rising to the challenge of articulating and de- 
fending the assumptions that led up to a guess. 

How Does Mathematical Argument in the Classroom 
Work to Express Mathematical Knowledge? 

As students volunteered their solutions to a given problem, I wrote them 
on the board for consideration, and I put a question mark next to all of 
them. Often I put students' names next to their answers, as a help for every- 
one to remember who they are to address if they have something to say 
about that answer. The names also are meant to indicate that the answers 
still belong to the persons who figured them out, even though they have 
been given to the teacher. When someone asserted that one of the answers 
should be eliminated because it was incorrect, it was considered fair game 
for the teacher to ask anyone in the class to explain why. 

Once the list of students' solutions was up on the board, they were 
open for discussion and revision. Students often began by explaining why 
they gave the answer that they did. If they wanted to disagree with an 
answer that was up on the board, the language that I have taught them 
to use is, "I want to question so-and-so's hypothesis." (Until the group 
arrived at a mutually agreed-upon proof that one or more of the answers 
must be correct, all answers were considered to be hypotheses.) I always 
asked them to give reasons why they questioned the hypothesis, so that 
their challenge took the form of a logical refutation rather than a judg- 
ment. The person who gave the answer was free to respond or not with 
a revision. To communicate the idea that I thought every answer was (or 
should be) arrived at by a process of reasoning that makes sense to the 
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person who volunteered it, I asked the class, "Can anyone explain what 
they thought so-and-so was thinking?" and "Why would it make sense 
to think that?" And then I asked the person who gave the answer to re- 
spond. This routine was a way of modeling talk about thinking. It also 
made thinking into a public and collaborative activity, wherein students 
would rehearse the sort of intellectual courage, intellectual honesty, and 
wise restraint that Polya considered essential to doing mathematics. 

The Teacher as a Representation of What It 
Means To Know Mathematics 

Simply by virtue of having had more education, the teacher represents 
the most expert knower of mathematics in the classroom and, in this role, 
has the potential to demonstrate the nature of expertise to those who seek 
to acquire it. Given my goal of teaching students a new way of knowing 
mathematics, I needed to demonstrate what it would look like for someone 
more expert than they to know mathematics in the way I wanted them 
to know it. The role I took in classroom discourse, therefore, was to follow 
and engage in mathematical arguments with students; this meant that I 
needed to know more than the answer or the rule for how to find it, and 
I needed to do something other than explain to them why the rules 
worked. I needed to know how toprove it to them, in the mathematical 
sense, and I needed to be able to evaluate their proofs of their own mathe- 
matical assertions. In the course of classroom discussions, I also initiated 
my students into the use of mathematical tools and conventions. Infor- 
mation about tools and conventions was integrated with teaching the class 
about the process of doing mathematics. 

For students to see what sort of knowing mathematics involves, the 
teacher must make explicit the knowledge she is using to carry on an argu- 
ment with them about the legitimacy or usefulness of a solution strategy. 
She needs to follow students' arguments as they wander around in various 
mathematical terrain and muster evidence as appropriate to support or 
challenge their assertions, and then support students as they attempt to 
do the same thing with one another's assertions. As the teacher moves 
around in mathematical territory in a flexible manner, she is modelling 
an approach to problem solving. She is demonstrating what the mathemati- 
cian Henry Pollak calls "cross-country" mathematics. 

In contrast to walking on a well marked path, the cross-country terrain 
is jagged and uncertain; watching someone traverse it is a key to learning 
how to traverse it yourself. Pollak said of his teacher, Ed Begle, 

[As a student, I] had very interesting time watching him struggle, 
inventing proofs and trying to think about the right way to do it. 
I learned a lot more mathematics that way than I might have if it 
had been a perfectly polished lecture; and I think already at that 
time I developed my feeling that I like cross-country mathematics. 
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Mathematics, as we teach it, is too often like walking on a path that 
is carefully laid out through the woods; it never comes up against 
any cliffs or thickets; it is all nice and easy. (Albers & Alexander-
son, 1985, p. 231) 

If the teacher only demonstrates that she knows how to explain the rules, 
and whether or not students' answers are correct, the student will get an 
unfortunately limited picture of mathematical expertise, and it is unlikely 
that he or she would learn how to walk on any but the most well-marked 
paths. 

Summary 

These patterns of social interaction were designed to involve me, as the 
teacher, in three different kinds of teaching about what it means to know 
mathematics. Sometimes, I straightforwardly told students what kinds of 
activities were and were not appropriate. At other times, I modeled the 
roles that I wanted them to be able to take in relation to themselves and 
one another. And at other times, I did mathematics with them, just as a 
dance instructor dances with a learner so that the learner will know what 
it feels like to be interacting with someone who knows how to do  what 
he or she is trying to learn how to do.  Just as the dance instructor knows 
traditional forms of dance and demonstrates them, I demonstrated the con- 
ventions of mathematical discourse to my students, but we also reinvented 
them as we did mathematics together. Students also assumed the role of 
more experienced knowers in relation to one another as they became more 
competent in the interactional routines associated with mathematical dis- 
course in the classroom. The lesson to be described here represents a 
moment in this process, when I would claim that the students had learned 
to regard themselves as a mathematical community of discourse, capable 
of ascertaining the legitimacy of any member's assertions using a math- 
ematical form of argument. 

An Episode of Teaching and Learning 

About Knowing Mathematics 


Mathematical discourse is about figuring out what is true, once the mem- 
bers of the discourse community agree on their definitions and assump- 
tions. These definitions and assumptions are not given, but are negotiated 
in the process of determining what is true. Students learn about how the 
truth of a mathematical assertion gets established in mathematical discourse 
as they zig-zag between their own observations and generalizations-their 
own proofs and refutations-revealing and testing their own definitions 
and assumptions as they go along. At the same time, they are introduced 
to the tools and conventions used in the discipline, which have been 
refined over the centuries to enable the solution of theoretical and prac- 
tical problems. 
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Content and Context 

In the lesson I will describe here, the mathematical content of the discourse 
was the operation of exponentiatio'n: writing numbers as powers of other 
numbers and comparing their orders of magnitude. The use of orders of 
magnitude for thinking about relationships among numbers is attributed 
to Archimedes. His notions about comparing magnitudes by comparing 
orders of magnitude, or powers, later evolved into the scientific notation 
and logarithms that are indispensable to applications of mathematics across 
the spectrum of scale, from microbiology to astronomy (Jacobs, 1970). 

By comparing powers, we can understand measurement and count- 
ing (both in human experience and in science) in terms of hierarchies of 
scale, and we can appreciate something of the nature of mathematical 
knowledge in comparison to knowledge gained from physical experience. 
With powerful telescopes and microscopes, scientists have been able to 
extend our experience over only 42 orders of magnitude: The largest 
known dimension (the distance to the furthest star that has been perceived) 
is about meters, and the smallest particle of matter that has been 
identified (the quarks which make up the internal structure of protons) 
can be measured as 10-l6 meters (Morrison, Morrison, & Eames, 1982). 
Yet mathematicians have the capacity to assert and prove the truth of state- 
ments about numbers as large as 10loO and infinitely larger, and 10-loo and 
infinitely smaller. Descartes is attributed with the first use of the exponen- 
tial form x2 to symbolize x multiplied by x .  This was more than a mere 
shorthand, for it provided a basis on which new mathematical relation- 
ships could be conceived and represented and then operated upon with 
much simplified procedures. The concurrent development of logarithms 
by Napier led to entire new branches of mathematical theory and power- 
ful scientific applications of quantitative tools (Kramer, 1970). 

The power of exponents lies in the idea one can compare numbers 
by comparing their orders of magnitude, thereby simplifying the mental 
operations involved in the comparison; one technical implication of that 
simplification is that one can multiply large numbers by adding exponents, 
and divide by subtracting them. To find out how many times wider a build- 
ing that was lo2 meters across was compared with a needle that was 10-3 
meters across, for example, we would divide lo2 by yielding lo5. 
These kinds of calculations are puzzling, not only because they involve 
subtracting a negative from a positive number, but because they use addi- 
tion and multiplication to combine quantities in ways that build one 
abstraction on top of another. It is easy enough to legitimate a sum by 
pushing two groups of objects together and counting the total or to 
legitimate a product by displaying a rectangular array. But how could 
anyoneprove that it is legitimate to add and subtract exponents as a way 
of multiplying and dividing? Why is it true that 103 divided by 1 0-2 is 1 O j ?  
In mathematics we can prove that this is true, given certain assumptions 
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about the meaning of exponents, by the process of mathematical argu- 
ment, the process of observation and generalization that Lakatos and Polya 
describe. 

The Teaching Agenda: Content and Discourse Intertwined 

I wanted my students to learn not only that they could divide or multiply 
by subtracting or adding exponents and how to use the technology of 
exponents, but also that the warrant for doing so comes from mathematical 
argument and not from a teacher or a book. This meant that I needed to 
work on two teaching agendas simultaneously. One agenda was related 
to the goal of students' acquiring technical skills and knowledge in the 
discipline, which could be called knowledge of mathematics, or 
mathematical content. The other agenda, of course, was working toward 
the goal of students' acquiring the skills and dispositions necessary to par- 
ticipate in disciplinary discourse, which could be called knowledge about 
mathematics, or mathematical practice (Ball, 1988; Schoenfeld 1985b; 
Wilson, 1988). 

These two kinds of knowledge interact: In learning about discourse, 
students learn about what kind of knowledge they have when they know 
how to use exponents. At the same time, knowledge of tools, vocabulary, 
and symbols provides students with the "cognitive technologies" that 
enable them to make arguments of a substantially different sort than they 
would be able to make without them (Pea, 1987; Vygotsky, 1978). The 
interaction between learning to use the tools that have become a part of 
mathematical culture and inventing new mathematics by reasoning may 
be thought of as the process by which the individuals in the community 
of discourse that is the school class come to know mathematics. As such, 
it parallels the development of knowledge in the discipline (see Cassierer, 
1957). 

The nature of mathematical knowing is such that one can find out 
something about the characteristics of unknown quantities by studying 
patterns in numbers that one can observe (Polya, 1954). This is the essence 
of the connection between learning about exponents and learning about 
mathematical knowledge. I started the unit on exponents by asking all of 
the students in the class to prepare their own tables of squares from 12 
to 1002 using calculators. I challenged them to find patterns in the tables, 
and they were actively engaged in doing so for at least three 45-minute 
periods. 

During this activity, they invented a way of thinking about relation- 
ships among the numbers on which I could build to take them into new 
mathematical territory: They developed the idea of talking about patterns 
in powers by focusing on the last digits of numbers, rather than thinking 
about all of the digits in a number at once. This was a tool, developed within 
the mathematical community of discourse in my classroom, that could 
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1 = 

25 


36 


49 


64 


81 


100 


11' = 121 


144 


14' = 

225 


16' = 256 


17' = 289 


... and so on 

Figure 1.  Patterns in square numbers 

be used to move away from the particular numbers that were represented 
in the list of square numbers, toward the characteristics of those numbers 
and the structure of relationships among them. For my class of fifth graders, 
looking for patterns in the last digits of powers was a way into knowing 
about what sort of predictive power can be derived from the analysis of 
quantitative order. 

The first assertion that students in my class made about patterns in 
square numbers was that the last digits of the squares alternated between 
being odd and even, just as the base numbers did. Their most sophisticated 
conjecture about squares, asserted toward the end of the lesson, was as 
follows: The square of a multiple of 10 would always be a multiple of 10 
and so end in a zero, the square of a number ending in 5 would also always 
end in a 5, and in between the zeroes and fives, the strings of last digits 
would always be symmetrical around both zero and 5. They used physical 
representations like the chart illustrated in Figure 1 to work out this con- 
jecture. And they proved that the pattern would continue forever by argu- 
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ing that numbers that ended in 1 or 9 would have to have squares that 
ended in I ,  numbers that ended in 2 or 8 would always have squares that 
ended in 4, numbers that ended in 3 or 7 would always have squares that 
ended in 9, and numbers that ended in 4 or 6 would always have squares 
that ended in 6. Because the last digits of whole numbers are arranged 
in the order 1, 2 ,  3, 4, 5,  6, 7, 8, 9, 0, and this arrangement repeats itself 
over and over again, the square numbers would follow the doubly sym- 
metrical pattern as long as there were base numbers to associate them with. 

It was at this point in the unit on exponents that the lesson I want 
to describe here occurred. I used the students' idea of looking at what 
happens in last digits to elicit some more general conjectures about how 
to operate with exponents. The lesson began when I wrote on the black- 
board at the beginning of class, "What is the last digit in: 54? 64? 74?" and 
I challenged the class to tell me if they could prove that their conjectures 
about what these last digits would be were true without doing the full 
multiplications. Finding the answers to these three questions is a trivial 
activity, and it is made even more so because they can be obtained easily 
by using a simple calculator. But the mathematical content embedded in 
inventing the strategies that can be used to assert the answers without doing 
the calculations is mathematically significant and engages students in argu- 
ing about the key ideas behind how exponents work. The activity of 
developing such strategies engages students in clarifying the distinction 
between exponentiation and multiplication and leads to evidence that sup- 
ports the mathematically legitimate shortcut of finding products by adding 
exponents. So although these are small questions, the problems entailed 
in finding ways to generate the answers to these questions can engage 
students in thinking about large ideas. The earlier lessons we had done 
on patterns in the last digits of squares laid the groundwork for students 
going beyond the trivial in their discussion of fourth power patterns. 

After writing these questions on the board, I walked around the class- 
room, watching and listening to what the students were doing, and when 
everyone seemed to be engaged in the task, and most had given it some 
thought, I began a class discussion. That discussion had three parts: a clari- 
fication of terms, symbols, and definitions; a consideration of the special 
properties of powers of 5 and 6; and speculations about powers of 7 that 
led to more general hypotheses about how exponents could be used to 
do arithmetic operations more efficiently. The discussion lasted for 
approximately half an hour and engaged almost every member of the class 
in generative mathematical activity. 

Agreeing on What Exponents Mean 

In the first part of the discussion, teacher and students were finding out 
what other members of the group understood about the operations indi- 
cated by exponents and coming to some agreement about common 
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language to use in their conversation. Students started doing some con- 
scious guessing about how exponents work as they were defining the terms 
of the argument. The first part of the class session focused on the fourth 
power of five. I began by saying, "Who is ready with a theory about this 
one?", pointing to 5* on the board. 

Narinia asserted that, "It's going to be the same as the squares. First 
you take 5 and square it, and you get 2 5 ,  and the last digit of that is 5 ,  
and you square that." Alianna then said, "Yeah. You square the 5 two 
times." Her tone of voice suggested agreement with Narinia, but what she 
said would not unambiguously describe the procedure that Narinia had 
followed. In previous classes, Alianna and other students had interpreted 
expressions written as "xn"to mean "multiply x by n" We had discussed 
then why exponential notation might lead to this confusion. 

I wrote on the board: "Alianna: Square five two times. Narinia: Square 
five and then square that." I said, "I think we have a language problem 
here. Do those two directions mean the same thing?" Martha responded 
saying, "They might think you have to square 5 and times it by 2." And 
I wrote " 2 5  x 2" on the board again, saying, "Do you mean this?" At 
this point, Alianna came back into the conversation and said, "No, cause 
it's square it, again. Also, if you said 'Square 5 two times,' they might 
add it and get 50 [ 2 5  + 251." So I asked, "How should you say it?" 

Narinia reentered the discussion, clarifying what she had said earlier: 
"Square 5 ,  and then square the answer to that." Carl also had his hand 
raised, and said, "Square the squared number of 5."  And Gar piped in, 
"I was going to say what Narinia said." Martha then thought it appropriate 
to make a statement about how she interpreted the conversation: "I under-
stood both of them. I did 5 times 5 and I did 5 times 5 again, but I didn't 
add them, I multiplied them." 

Discussion 

There are several mathematically legitimate ways to figure out the last digit 
in 5 4 .  One could multiple 5 x 5 and then multiply the answer to that by 
5 ,  and multiply the answer to that by 5 :  5  x 5 ,  then 5 x 2 5 ,  then 5 x 125,  
to get 6 2 5 .  What the students were trying to figure out-the problem they 
were solving-was whether there was a more efficient way to do it that 
was also mathematically defensible. As they argued about this, they clarified 
their language and use of symbols. 

Students and teacher need to be able to have a conversation using 
terms that are functional, not only for communication but for reasoning. 
As a representative of mathematical culture outside of the classroom, I 
brought conventional mathematical tools (including language and sym- 
bols) into the discussion and negotiated their meaning with students to 
add to the tools they are able to use to enhance their thinking. In the first 
part of the class, this entailed my checking in with those students who 
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had in past discussions interpreted "the power of 2" to mean "multiply 
by 2." Although exponentiation entails repeated multiplication, just as 
multiplication entails repeated addition, it is a qualitatively different opera- 
tion from multiplication, and it works by different rules (Asimov, 1961). 
Unless this difference between multiplying by 2 and the power of 2 was 
cleared up, these students would be unable to participate productively 
in arguments about how the fourth power of a number might be related 
to the second power and go on to assert appropriate rules for working 
with powers. The first part of the discussion served to establish some com- 
mon ground for myself as the teacher and the students as class members, 
enabling them as a group to go on to new questions about exponents. 

Conscious Guessing and Proof That Zig-Zags 
Between Induction and Deduction 

After this discussion of how we would talk about the operations indicated 
by exponents, Sam asserted, about the last digit in 54, "It has to end in 
a 5." I invited everyone in the class to consider the validity of Sam's 
decisive assertion and to see if they could explain why he seemed to be 
so sure. The question I was asking was, How does he know that is true? 
Harriet said, "Well, anything multiplied by 5 has to end in a 5 or a zero," 
and Theresa quickly added, "but it has to be a 5 because when you multiply 
5 times 5 you get a 5 [for a last digit]." Martha observed, "You times the 
square number, you square it again and you get 625." And Carl responded, 
moving to the level of a mathematical generalization, "You don't have 
to do that. It's easy, the last digit is always going to be 5 because you 
are always multiplying last digits of 5, and 5 times 5 ends in a 5." Carl 
went beyond the question about the last digit in 54and gave both a con- 
jecture and a proof about what must be true of the last digit of all of the 
powers of 5. (At this point in the discourse, the assumed domain for 
exponents is whole positive numbers.) 

At this point, some other students, who had been working at finding 
higher and higher powers of 5 with their calculators, made the conjec- 
ture that all powers of 5 would end in 2 5  for their last two digits, and 
they made some arguments for why that might always be true, no matter 
how high the power. In doing so, they also zig-zagged between observa- 
tions and generalizations. It is interesting that their deductive arguments 
relied on the framework of the conventional multiplication algorithm, even 
though they had been using the calculator to develop their hypothesis 
inductively: They talked about what would "have to happen" in the 
"ones" and the "tens" columns every time you multiplied and carried 
on successive multiplications of a number that ended in 25  by 5.  

We had a short discussion of the powers of 6, which seemed to be 
of little interest because "they worked just like fives" (i.e., everytime you 
multiply a number that ends in 6 by another number that ends in 6, the 

48 



Mathematical Knowing and Teaching 

result will end in 6).There was a conjecture that this similarity in last digits 
might be true for the powers of every number from 1 to 9, but someone 
quickly refuted it with a counterexample: 72is 49; the power does not 
end in the same digit as the base number. Some students were talking 
among themselves about the fact that the last two digits in the powers 
of 6 were not always "36," which they had expected, based on an analogy 
to 5 where the last two digits were always 25. 

Discussion 

In this part of the lesson, students had begun to make assertions that were 
based on their inductive observations of patterns and to move back and 
forth between these observations and deductive arguments about why the 
patterns would continue, even beyond the numbers they had tested. They 
ranged beyond speculating about the fourth power, which was the focus 
of the initial problems, and made conjectures about all of the powers of 
5 and 6. They began by stating reasons why anyone might "know for sure" 
that the last digit of a power of 5 would always be 5 ,  and then went on 
to explore the boundaries of the theory that "if the last digit is always 
n when you raise n to some power, the last two digits will always be n2." 
This theory worked for n = 5;they proved that the last two digits of any 
power of 5 would be "25" (or 52).Because the powers of 6 always ended 
in a 6 ,  they wondered if the two-digit conjecture would also work for 
n = 6 .  Two students asserted that (i.e., stating their idea as collaboration: 
"Me and Hudson think that. . . ") the powers of 6 should end in 36, but 
someone else quickly found a counter example. 

In the course of this discussion, students shifted around from talking 
about "What I did" to figure out the problem to "What you do." They 
were referring to "what one does," distancing themselves from the pro- 
cedures they were evaluating and making their assertions more general. In 
this process, their beliefs became justified and they moved into the realm of 
mathematical truths that were legitimated by the community of discourse. 

There is evidence in this segment of the lesson that students appreciate 
that mathematics is about finding efficient strategies to solve problems; 
in addition to the student-initiated search for two-digit patterns, this 
became apparent when Carl made a point of saying that "you don't have 
to figure out that 54 is 625 in order to know that its last digit must be 5," 
and then went on to support his argument with mathematical evidence. 
He was calling the class's attention to what doing mathematics means and 
giving a particular example of what is entailed in doing it. It is not that 
multiplying 5 x 5 x 5 x 5 does not prove that the last digit in 5 4  is 5 ,  
but this proof is particular, not general; it is not as elegant as one that 
focuses only on what must be true about the last digit that results from 
each step in the operation. 
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When the Answer Is Not a Signal To Stop Thinking 

When I asked if anyone had any ideas about 74, there was quick agree- 
ment that it should be 1 and I asked for proof. Gar said, "7 times 7 is 49. 
And 9 times 9 is 81. So take the 1." Embedded in this argument is the 
assumption that 74 = 72 x 72 and that all you need to attend to is the last 
digit all the way through the procedure. Gar multiplied 9 x 9 to arrive 
at 1; he did not multiply 49 x 49, and then try to figure out the answer 
to that. Versions of his argument were given and elaborated by other stu- 
dents. There was a repetition in much of what they said of the language 
that had been used in discussing 54, but the same terms and sentence 
structures were being used by different students. By this point, nearly 
everyone had had something to say. 

Then I asked, to further elicit their conjectures about how exponents 
work, "What about 7 to the fifth power?" Several students raised their 
hands after a few moments, and the ones that were called on said in quick 
succession: 

Arthur: I think it's going to be a 1 again 

Sarah: I think it's 9.  

Soo Wo: I think it's going to be 7 .  

Sam: I t  is a 7 .  


I wrote on the board, "75 = l ?9? 7?" and said, "You must have a proof 
in mind, Sam, to be so sure," and then I asked, "Arthur, why do you think 
it's I?" 

The following discussion ensued as the students attempted to resolve 
the problem of having more than one conjecture about what the last digit 
in 7 to the fifth power might be. It was a zig-zag between proofs that the 
last digit must be 7 and refutations of Arthur's and Sarah's alternative con- 
jectures. The discussion ranged between observations of particular answers 
and generalizations about how exponents-and numbers in general- 
work. Students examined their own assumptions and those of their class- 
mates. I assumed the role of manager of the discussion and sometimes 
participated in the argument, refuting a student's assertion. 

Teacher: Arthur, why do you think it's l ?  
Arthur: Because 74 ends in 1 ,  then it's times 1 again. 
Gar: The answer to 7* is 2,401. You multiply 

that by 7 to get the answer, so it's 7 x 1 .  
Teacher: Why 9 ,  Sarah? 
Theresa: I think Sarah thought the number should be 

49. 

Gar: Maybe they think it goes 9 ,  1 ,  9 ,  1 ,  9 ,  1. 

Molly: I know it's 7 , 'cause 7 .  . . 

Abdul: Because 74  ends in 1 ,  so if you times it by 


7 ,  it'll end in 7 .  
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Martha: 
Sam: 

Carl: 
Arthur: 

Teacher: 
So0 Wo: 
Teacher: 

So0 Wo: 
Gar: 

Martha: 
Teacher: 

Martha: 
Carl: 

Arthur: 

I think it's 7. No, I think it's 8. 

I don't think it's 8 because, it's odd number 

times odd number and that's always an odd 

number. 

It's 7 because it's like saying 49 x 49 x 7. 

I still think it's 1 because you do 7 x 7 to 

get 49 and then for 74 you do 49 x 49 and 

for 75, I think you'll do 74 times itself and 

that will end in 1 .  

What's 492? 

2,401. 

Arthur's theory is that 75 should be 

2401 x 2401 and since there's a 1 here and 

a 1 here. . . 

It's 2,401 x 7. 

I have a proof that it won't be a 9. It can't 

be 9 ,  1 ,  9 ,  1 ,  because 73 ends in a 3 .  

I think it goes 1 ,  7, 9 ,  1 ,  7, 9 ,  1 ,  7, 9 .  

What about 73 ending in 3? The last number 

ends in . . . 9 x 7 is 63 .  

O h . .  . 

Abdul's thing isn't wrong, 'cause it works. 

He said times the last digit by 7 and the last 

digit is 9 ,  so the last one will be 3.  It's 1 ,  7, 

9 ,  3 ,  1 ,  7, 9 ,  3 .  

I want to revise my thinking. It would be 

7 x 7 x 7 x 7 x 7. I was thinking it would 

b e 7 x 7 x 7 x 7 x 7 x 7 x 7 x 7 .  


Once  Arthur revised his idea that the  last digit should b e  1 there were 
no further disagreements in the  class, with the  conclusion that it should 
b e  7. There  was a little time left, a n d  I used it t o  extend into a different 
domain  the  hypotheses students had been developing about h o w  expo-
nents  work .  

Teacher: 

Arthur: 
Teacher: 

Teacher: 
Arthur: 
Julio: 

So0 Wo: 

Teacher: 

What power's that? [i.e., 

7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 ]  

8th. 

That's 74 squared. 

[On board: 78 = 74 x 74] 

What's 716, Arthur? 

It's going to be 78 x 78. 

I think 716 x 716 is going to be 732. It just 

doubles. 

Since 73 is 343, I think 76 would be 

73 x 73, which would be 343 x 343. 

[On board: 74 = 72 x 72] 

Time is up. We have to stop. We'll continue 

on Monday. 


At this point ,  some  students were  verging on declaring an  important  law 
o f  exponents:  (na) (nb) = na + b, which they wou ld  articulate more  ful- 
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ly, and prove the legitimacy of, in the next few classes. They were also 
beginning to develop a modular arithmetic of "last digits" to go with dif- 
ferent base numbers, leading them to generalize further about the pro- 
perties of exponents. 

Discussion 

By the end of the lesson, 14 of the 18 students present in the class had 
had something mathematically substantial to say about exponents: an inter-
pretation of language or symbols, an assertion about a pattern, a proof 
that a pattern would continue beyond the observed data, or an interpreta- 
tion of another student's assertion. Each of these kinds of contributions 
is both an expression of what the student knows and a rehearsal of what 
the student believes to be an appropriate contribution to a school lesson 
in mathematics. 

This final segment of the lesson represented a shift from the questions 
that were posed at the beginning of class to a new kind of question. It 
was an extension of the domain of discourse from patterns that would 
apply to numbers raised to the fourth power, to strategies for figuring out 
what would be the last digit in a number raised to the fifth power. In the 
case of 5 and 6 as a base number, the question was trivial, but in the case 
of 7, it was not. The new question provided a forum in which assump- 
tions that might have been made about how exponents work in a special 
domain could be tested on a new population with different characteristics. 
From the teacher's point of view, this shift has at least two functions. It 
extends the content of the lesson into new territory, and it serves to assess 
students' "conceptual competence" (Greeno, Riley, & Gelman, 1984) by 
assessing whether they could bring a conceptual structure developed in 
a more familiar domain to bear on one that was less familiar and more 
complex. 

I purposely did not ratify any of the students' assertions about the 
answer to 7 5 ,or their arguments for their various postions. When Arthur 
says, "I want to revise my thinking," he is using a phrase that he and the 
rest of the class have been taught and encouraged to use when they want 
to change their minds about an assertion made earlier in the discussion. 
It carries a different message than saying "My answer was wrong, and now 
I know the right one." When a student is in charge of revising his or her 
own thinking, and expected to do so publicly, the authority for determin- 
ing what is valid knowledge is shifted from the teacher to the student and 
the community in which the revision is asserted. 

Arthur maintained his intellectual courage through the course of this 
discussion, not changing his belief without revising the assumptions on 
which it was built. The repeated assertions of other students that the last 
digit was 7 did not incline him to revise, because he had made the guess 
that 7 5would be obtained by multiplying 74by 74,perhaps because we 
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had established that 74 = 72 x 72. He was searching for a mathematical 
law, rather than just looking for the answer, and his conjecture was that 
the next highest power would be obtained by squaring the power below 
it. He revised his conjecture to assert that squaring a power would result 
in a power than was double the one you started with, so that 716 could 
be obtained from the product of 78 and 78, 732 could be obtained from 
the product of 716 and 716, and so on. Beginning with a guess and explor- 
ing it with courage and modesty, he arrived at a bit of mathematical truth. 
What he was learning was both the laws of exponents and how to justify 
that they work within the domain of mathematics. 

Gar also exhibited intellectual modesty in his argument against Sarah's 
assertion that 74 would end in a 9.  He worked at figuring out why she 
might think that and then explained the logical contradiction in her 
assumption. He did not tell Sarah she was wrong. He left that judgment 
to her. Sarah never does get to tell the class why she thought the last digit 
should be 9, and there is no verbal record of whether she revised her think- 
ing. (One would need to explore Sarah's thinking about exponents on 
some later occasion to find out more about whether her ideas about how 
they worked were congruent with mathematical conventions.) The same 
could be said of the interaction between Martha and Sam over whether 
the last digit could be 8. 

The role that I took as the teacher, in relation to Arthur's assertion 
that the last digit in 7 5should be 1, was to ask him to explain, to monitor 
the tone of other students who wanted to disagree, to assert what some 
of Arthur's assumptions might have been, and to ask Arthur to articulate 
the revision that he had made. Throughout this part of the class, the teacher 
acted to support the idea that "Arthur's thinking" should be everyone's 
concern. The lesson was not just getting Arthur to rethink his assumptions, 
but helping everyone to see why those assumptions had led him to the 
conclusion that 75would end in a 1. Both students and teacher have a 
different relation to the subject matter in this kind of discourse than they 
would in a conventional "knowledge telling" exchange. 

Throughout the discussion, other students repeatedly argued for the 
conclusion that the last digit in 75 should be 7. These arguments could 
be interpreted as "knowledge telling" by students who wanted the teacher 
to know what they were thinking, but they had the dual purpose of at- 
tempting to convince other members of the class that this conclusion was 
valid. Because they were asserted interactively with other assertions, there 
is evidence that they may have been intended to have this argumentative 
purpose. On many occasions when such discussions occurred, one student 
might give several arguments for why his or her conclusion was valid, and 
sometimes students would even ask to come up to the board to illustrate 
an argument for the class. 

Worth noting in this part of the discussion is how often (15 times in 
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about 5 minutes) and how many (8 out of 20) students say "I think" or 
"I don't think" and then make an assertion. An analysis of their assertions 
shows that they are not mere expressions of opinion; they recount their 
own reasoning processes and analyze those of others. They use "I think" 
to mean "I have figured out that," and their assertions of what they have 
figured out are regularly followed by arguments for why their strategies 
seem valid. They are indicating authorship of the ideas that they assert, 
and they are also indicating that thinking is something that a student both 
does and talks about in a mathematics class. Making assertions in this form 
is an expression of what they believe about roles and responsibilities in 
relation to mathematical knowledge and where they put themselves in rela- 
tion to the establishment of valid arguments in the discipline. It contrasts 
significantly with the patterns of verbal interaction in more conventional 
lessons, such as those described by Mehan (1979) and Stodolsky (1988). 

Language use also signifies where the student is in the mathematical 
journey from a conscious guess to a proven theorem. Students who are 
sure that they can support their assertions say "It is," or "It has to be," 
or "I know." Saying "I think" rather than "It is" protects the student from 
associating his or her sense of self with an assertion that is later revised 
because it has been proven wrong (see Cobb, Yackel, & Wood, in press). 
This level of engagement with mathematical ideas may be similar to the 
process of exploration or "free writing" that occurs before one constructs 
a final draft (Barnes, 1976). In using this terminology from writing to 
describe classroom discourse more generally, Barnes asserts, 

The difference between exploratory and final draft is essentially 
a distinction between different ways in which speech can function 
in the rehearsing of knowledge. In exploratory talk and writing, 
the learner himself takes responsibility for the adequacy of his think- 
ing; final-draft talk and writing looks toward external criteria and 
distant unknown audiences. (pp. 113-1 14). 

I t  requires courage and modesty to expose one's exploratory thinking to 
others in the hopes that by engaging in the exchange of ideas in classroom 
discourse, one might end up with better ideas in the end. This final seg- 
ment of the lesson most clearly exhibits what the students are learning 
about the nature of mathematical knowledge and about their responsi- 
bilities as participants in the activity of learning mathematics. When they 
disagreed with their classmates, the disagreements took the form of 
presenting evidence that was intended to prove that what had been 
asserted could not be true. The evidence appropriate to mathematical dis- 
course is an argument that demonstrates that an assertion will lead to a 
contradiction, given the domain in which the discourse is conducted, or 
a counterexample. Students often were mustering such evidence in an 
attempt to defend their own assertions and refute the assertions of others 
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at the same time. Their choice of refutation as a form of disagreement with 
their peers instead of put downs or silence-forms more common to dis- 
course among fifth graders-is a significant indication of what they believe 
about how truth is established in mathematics: It is not established by the 
teacher, or another student, saying that an answer is right or wrong, but 
by mustering the evidence to support or disprove an assertion, be it one's 
own or that of a classmate. 

If That Is the End of the Story, Then What 
Is the Beginning? Some Nonmathematical 
Ways of Knowing Mathematics in School 

To support the argument that these students were learning something 
about mathematics, I need to substantiate the claim that they were doing 
something novel in this discussion or that they were not doing something 
that they had been doing before and that students of their age in school 
do regularly. In this section of the paper I will describe several patterns 
that characterize students' approaches to learning and knowing mathe- 
matics that occur in conventional classroom discourse, derived from my 
own observations and the classroom research literature. Although they 
are fitting as constructs based on students' experiences with learning 
mathematics in school, these approaches to learning are in conflict with 
those that Lakatos, Polya, and others consider to be appropriate to doing 
mathematics. That conflict gets worked out in my classroom as my students 
and I negotiate through the year about what our respective roles and 
responsibilities will be. I take the patterns in student behavior that I will 
describe here as a starting point for instruction about the nature of mathe- 
matical knowing. 

Turning to the Teacher or Some Other Reliable Authority for Ratification 

Perhaps the question I am asked most often by observers of my teaching 
is, "Don't you ever tell them whether their answers are right or wrong?" 
Students (and many other observers of teaching and learning) expect that 
this is part of the teacher's role, and they are disconcerted when the teacher 
does not comply. They ask, "How can I tell whether I am doing well, 
if you will not tell me whether the answer is right?" or "How do I know 
if I know my math if you won't check it for me?" (see also Stodolsky, 
1985).Once students figure out that their teacher will not be cajoled into 
doing the work of establishing the validity of their results, many students 
look for verification from peers whom they know from previous classes 
usually get the right answer. Even if they do not ask these students for 
help directly, they look to them in discussions and feel more confident 
if their own assertions match those of the students they identify as "smart 
in math." On occasion, when I have asked a student why he or she re- 
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vised an assertion, I would be told straightforwardly, "Because that's what 
Tommy said, and he's usually right." 

Treating Rules, Formulas, and Facts as if They Were Arguments 

Particularly among students who have been successful at school mathe- 
matics because they are good at memorizing and following rules, there 
is a tendency to use rules as reasons for action, without recognizing that 
using a rule is different from explaining why the rule works or why it is 
legitimate to use it in a particular case (Schoenfeld, 1985a). They answer 
questions about why it seems appropriate to use a particular rule in a given 
problem with a repetition of the rule or perhaps a reference to the person 
who taught it to them. These students are generally resistant to and impa- 
tient with the representation of numerical calculations in another medium, 
and they are often unable or disinclined to express the relationship be- 
tween arithmetic operations and the actions on quantities they are meant 
to indicate. They are disconcerted when their ability to use a conventional 
algorithm correctly goes relatively unrewarded by the teacher, while 
students who (from their perspective) have arrived at the "wrong" answer 
are praised for the questions they have raised or the way they have repre- 
sented the problem. Once they have arrived at an answer by correctly 
following the rules, not only do they not consider it their responsibility 
to listen to or argue with other students' answers, but also they act in ways 
that are disruptive to carrying on a discussion. 

Keeping Thinking Implicit or Private 

One common sort of student behavior that does not serve well in the crea- 
tion of mathematical discourse in the classroom is silence. In particular, 
silence as a way of expressing disagreement with an assertion is in con- 
flict with the notion that knowing mathematics involves arguing, defend- 
ing, challenging, and proving one's own ideas and those of others. It is 
not impossible that these activities could take the form of written rather 
than verbal communication (as they often do in communication among 
mathematicians), and that approach would be plausible in a situation where 
students have the tools, the time, and the skills to express their thinking 
in writing. But these conditions do not obtain in most elementary and 
many secondary classrooms. 

Often students who have not had much experience with the process 
of discussing mathematical ideas will answer questions about how they 
figured something out with phrases such as "I just know" or "I just thought 
it" or "I don't know how I figured it out" (see also Ball, 1988). These 
responses often are delivered in a tone of voice that further suggests, "And 
besides, it's none of your business or anyone else's how I got my answer." 
Sometimes these responses are delivered in a tone that indicates that the 
student does not have the words to tell anyone what mental processes 
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led to a particular conclusion. At other times the student's tone suggests 
that he or she lacks the courage to expose the thinking behind an asserted 
answer to teacher and class for comment or is uncomfortable with having 
the class pay attention to that thinking. On occasion, this response can 
be taken as an indication that the student saw the answer on the paper 
of a classmate at the next table and knows that telling that to the teacher 
would not be well received, either by the teacher or by the student with 
the answer. 

Disagreeing by Exerting Physical or Political Power Over Peers 

If students come up with different answers to a problem, it is not unusual 
for them to try to shout down the opposition or more indirectly to intimi- 
date someone who disagrees. Students often come to fifth grade assuming 
that it is appropriate to characterize one of their fellow classmates as 
"dumb" or "stupid" when that person has made what they consider to 
be an obvious error (see also Barnes, 1976). Even when they have learned 
that this sort of talk will not be tolerated in large-group discussions, they 
address their peers that way in small-group, problem-solving activities. 

A more civilized variant on this theme, related to other patterns just 
described, is students' suggesting in a large- or small-group discussion that 
we resolve a difference among conjectured answers by voting, without 
having to listen to why anyone thinks one or another answer is more valid. 
They argue that voting would resolve the disagreement without exposing 
the incorrect assumptions or procedures that led to the divergence in the 
first place. From the perspective of the student who often gets the cor- 
rect answer, this is sometimes offered as a ploy to push the class to "get 
on with it" in a way that also gets them some rewards, because they can 
rely on less secure students to vote for their answers. 

Stubbornness and Face-Saving Behavior 

Some students will stick with an assertion even after several arguments 
have been made against it, saying that the answer is correct because it was 
obtained by "my way of doing it." They do not distinguish between con- 
structing mathematically legitimate reasons and the act of an individual 
thinking something up. They act as if they believe that admitting that there 
is something wrong with their reasoning is an admission that there is some- 
thing wrong with them. They refuse to expose their assumptions, or they 
engage in clever casuistry to explain why their assumptions were valid. 
They turn the idea that multiple solutions to a problem are possible into 
the relativistic notion that every solution to a problem should be accepted 
just because someone came up with it (see also Cooney, 1987). 

These actions on the part of students are inappropriate only if one 
takes the view that knowing mathematics means engaging in mathematical 
discourse. Just as we assume that students' mathematical ideas make sense 
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to them within the domain of their experience, we need to asume that 
these kinds of social activities make sense to them as an expression of what 
they think it means to do and to know mathematics. If the lesson on expo- 
nents had been taught without regard for students learning about the nature 
of mathematical knowledge, these activities would not have been out of 
place. 

Although there are fewer of these activities in my classes toward the 
end of the year than at the beginning, it is not the case that lessons in the 
beginning of the year are entirely dominated by these activities. Neither 
is it the case that these activities are rare in lessons later in the year. What 
does change is that the class group, as a learning community, comes to 
regard mathematical discourse, rather than more typical forms of school 
interaction, as the norm. But as with other forms of socially destructive 
student activity, like passing notes or fighting on the playground, it con-
tinued to be my responsibility as the teacher to remind students of the 
norm. 

Conclusion 

As I went about trying to teach my students to give up more conventional 
forms of academic interaction and act on the basis of what Polya calls "the 
moral qualities of the scientist," I assumed that they would not learn a 
different way of thinking about what it means to know mathematics simply 
by being told what to do, anymore than one learns how to dance by being 
told what to do. I assumed that changing students' ideas about what it 
means to know and do mathematics was in part a matter of creating a social 
situation that worked according to rules different from those that ordinarily 
pertain in classrooms, and in part respectfully challenging their assump- 
tions about what knowing mathematics entails. Like teaching someone 
to dance, it required some telling, some showing, and some doing it with 
them along with regular rehearsals. 

There is convincing evidence that my students learned to do 
mathematics in a way that is congruent with disciplinary discourse. I do 
not claim that this result is entirely attributable to my teaching. Students 
come to any class with varying degrees of expertise and experience; some 
have none, and others have a great deal. There are other teachers in the 
school where I work who also have tried to engage their students in mathe- 
matical discourse over the past 4 years. Until this year, there was a mathe- 
matics coordinator in the district who understood what mathematical 
discourse is about, and believed it to be an appropriate teaching method. 
My students were taught by several other teachers in different subject mat- 
ter areas who also expect students to be the authors of ideas in the 
discourse structures of their disciplines. And the students also have families 
and friends with whom they interact and from whom they get ideas about 
what it means to know mathematics. But they did act differently toward 
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mathematical knowledge at the end of the year than they did at the begin- 
ning in my class, and informal questioning suggests that they even carried 
some expectations about how one does mathematics from my classroom 
into other settings. And they certainly came to act differently during mathe- 
matics lessons than students who learn in classrooms that are organized 
more typically. It would be worth trying to document these differences, 
and their possible supports, more thoroughly in future research. 

My argument about what is entailed in teaching students about the 
nature of mathematical knowledge draws on work in the history and phi- 
losophy of mathematics. This work supports a vision of knowing mathe- 
matics in the discipline that differs from knowing mathematics in conven- 
tional classrooms. My research examined whether it was possible to make 
knowing mathematics in the classroom more like knowing mathematics 
in the discipline. My organizing ideas have been the "humility and courage" 
that Lakatos and Polya take to be essential to doing mathematics. I have 
treated these as social virtues, and I have explored whether and how they 
can be deliberately taught, nurtured, and acquired in a school mathematics 
class. I concluded that these virtues can be taught and learned. What has 
been described here thus is a new kind of practice of teaching and learn- 
ing, one that engages the participants in authentic mathematical activity. 

But if the question of whether such practices are possible in schools 
has been answered, the answer points to several unsolved problems. My 
students were indeed learning mathematics, but learning is an ambiguous 
term. It is both the activity of acquiring knowledge and the knowledge 
that is acquired. What I have described here is the activity. The problem 
of defining what knowledge they have acquired remains. What do my stu- 
dents take away from this activity into the other classrooms they will 
inhabit? Or out of school into the world of work and family? Assuming 
we could find ways to solve the problem of defining and measuring this 
knowledge, and that the outcomes of this kind of activity are judged to 
be desirable, what would it take to produce them on a larger scale? And 
what consequences would producing them have for achieving broader 
social and economic goals? Answering the question of whether authentic 
mathematical activity is possible in schools does not by itself produce a 
solution to these problems. 

Notes 
hey are also different from the classical logicist or Platonic view of mathematics as 

the discovery of ultimate truth that cannot be refuted because of its logical foundations (see 
Hadamard, 1945; Hardy, 1940; Hoffman, 1987). 

' ~ h e s e  data included audiotapes of lessons for 6 months, videotapes of two units, 
records of speech and visual communication kept by an observer at least three times a week 
over 3 years, notebooks in which students did their daily work, including the writing and 
drawing they do to represent their thinking, and students' homework papers. 

h he application of such ethnomethodological and sociolinguistic frameworks to the 
study of mathematics teaching and learning has also been advocated by Bauersfeld (1979) 
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and Steiner (1987). Both argue that mathematics learning is a process of social as well as 
individual construction and that patterns of interaction are powerful in shaping both students' 
beliefs about what doing mathematics means and the sorts of activity they are inclined to 
enga e in during a mathematics lesson. 

'An example of how this hypothesis testing works in relation to a more conventional 
topic in the upper elementary curriculum-comparing the relative magnitude of two decimal 
numbers-is described in Lampert (1989). 

The author would like to acknowledge the contributions of Susan Florio-Ruane, Thom 
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Deborah L. Ball on  earlier drafts. The research reported here was funded by the Spencer 
Foundation through a grant to The National Academy of Education. 
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