
INCORPORATING

PROBLEM SOLVING

INTO THE

GRADE 9, 10 AND 11

CURRICULA

GRADE 11 PROBLEMS

Trigonometry
#1.
Assume that in 
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 that 
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measure of angle A.  Ans. 
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#2.
DEFGHI is a regular hexagon.  If P, Q, and R are the midpoints of


EF, GH and DI respectively, then what is the ratio of the perimeter


of 
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 to the perimeter of hexagon DEFGHI?  Ans. 3:4

#3.
Evaluate 
[image: image5.wmf]11

7

cos

11

4

cos

p

p

+

.  (No calculators)  Ans. 


#4.
ABC is an equilateral triangle and 
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DE = 3 and DF = 5, then what is the perimeter of 
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Ans. 
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#5.
In a right triangle, the square of the hypotenuse is equal to twice


the product of the legs.  What is the measure of the two acute 


angles?  Ans. both are 
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Quadratic Equations
#6. 
Find the number of real solutions to the equation
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.  Ans. 


Conics
#7.
The temperature at a point 
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 in a plane is given by the


expression 
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.  What is the temperature at the 


coldest point?  Ans. –5

#8.
Find the equation of the locus of centres of all circles with

radius 3, in the same plane, passing through the point (1,-2).

Ans. 
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Sequences and Series
#9.
In a geometric sequence whose terms are positive, any term


is equal to the sum of the next two following terms.  What is


the common ratio?  Ans. 
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#10.
The first term of an arithmetic series of consecutive integers is
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#11.
If the 
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 term of an arithmetic sequence is equal to m, and the
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 term is equal to k, then find the 
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 term with respect to


m, k and n.  Ans. 
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Exponential Equations
#12.
The formula 
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 gives, for a certain group, the number


of individuals whose income exceeds x dollars.  The lowest income


of the wealthiest 800 individuals is at least how big?  Ans. $10,000

#13.
Solve the system of equations, 
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Ans. 
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LUNCH TIME MATH 

Make the Game Fair

#1.  
I tell you that I am going to pay you a sum of money that’s yet to be


determined.  Then I will flip a coin until the first head turns up, at


which point the game is ended and you must pay me a sum


determined by the following:  if the head appears on the first toss,


you pay $1; on the second, $2; on the third, $4; on the nth, $
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How much money should I give you in advance so that this game 


will be fair? 

#2.
Ian and Peter shuffle identical decks of cards and then deal them


out simultaneously, one card at a time.  Every time they deal


identical cards (ie. same suit and denomination), Peter must give

Ian a dollar.  How much money should Peter ask for from Ian before beginning to make the game fair?

Solutions

#1. 
To make this game fair, I would have to give you an infinite amount of money in advance.  The reason has to do with the “expected value” of the game, which is equal to the sum of the individual prizes each multiplied by the probability of winning it.  My chance of winning $1 is 
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; of winning $2 is 
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; etc. Therefore, my mathematical expected earnings are:
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and so on.  But this is equal to 

$1/2 + $1/2 + $1/2 +…which is an infinite sum.

#2.
Peter should ask for $1 in advance in order to make the game fair.  Consider the second deck 

to be a set of guesses as to the identity of

each card in the first deck.  Before any cards are drawn, the probability of correctly guessing 

any particular card in a 52-card deck is 1/52. 

 
Since the second deck represents, in effect, 52 

guesses, the expected number of correct guesses is the sum 1/52 + 1/52 + 1/52 + …52 times, 

or 1 card. 
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