edexcel

Mark Scheme (Results)

March 2012

GCSE Mathematics (1380) Higher Paper 3H (Non-Calculator)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to the subject team at Pearson about Edexcel qualifications. Their contact details can be found on this link: www.edexcel.com/teachingservices

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

March 2012
Publications Code UG031118
All the material in this publication is copyright
© Pearson Education Ltd 2012

NOTES ON MARKING PRINCIPLES

1 Types of mark

M marks: method marks
A marks: accuracy marks
B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

cao - correct answer only	$\mathrm{ft}-$ follow through
isw - ignore subsequent working	$\mathrm{SC}:$ special case
oe - or equivalent (and appropriate)	dep - dependent

or equivalent (and appropriate)
dep - dependent
indep - independent

No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.
Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Money notation

Accepted with and without the "p" at the end.

Range of answers
Unless otherwise stated, when any answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all
numbers within the range (e.g 4, 4.1).

1380_3H					
Question		Working	Answer	Mark	Notes
1			$a+2 b$	2	$\begin{aligned} & \text { M1 for } 2 \mathrm{a}-\mathrm{a}(=\mathrm{a}) \text { or } 3 b-b(=2 b) \\ & \text { A1 for } a+2 b \text { or } 1 a+2 b \end{aligned}$
	(b)		$8 m-12 n$	1	B1 cao
2		$\begin{aligned} & \frac{60.2 \times 0.799}{223} \approx \\ & \frac{60 \times 0.8}{200}=\frac{48}{200}=0.24 \end{aligned}$	0.24	3	B1 for any two of $60,0.8,200$ seen or 48 seen M1 for at least one of $60,0.8,200$ and a correct method to begin to evaluate eg. the numerator may be correctly evaluated or a correctly simplified fraction (NB. fraction may not be fully simplified) A1 for answer in the range 0.15 to 0.3 from correct working

38					
Question		Working	Answer	Mark	Notes
4	(a)		150	1	B1 for 150 or 150°
	(b)		95	2	B1 for 95 or 95°
					B1 for full reasons, eg. alternate angles are equal and the sum of angles on a straight line is $\underline{180}$
					OR the sum of angles on a straight line is $\underline{180}$ and corresponding angles are equal
					OR vertically opposite angles and co-interior (or allied or supplementary) angles

1380_3H					
Question		Working	Answer	Mark	Notes
8	(a)	$\begin{aligned} & 13 x+1=11 x+8 \\ & 13 x-11 x=8-1 \text { or } 1-8=11 x-13 x \end{aligned}$	3.5	2	M1 for showing the intention to isolate either the algebraic or the numerical terms in an equation e.g. $13 x-11 x$ or $8-1$ A1 for 3.5 or $3 \frac{1}{2}$ or $\frac{7}{2}$ oe
	(b)	Substitute $y=-2$ into $\frac{4}{y}+y=2 y$ $\begin{aligned} & \text { LHS }=\frac{4}{-2}+(-2)=-4 \\ & \text { RHS }=2 \times(-2)=-4 \end{aligned}$ OR $\begin{aligned} & 4+y^{2}=2 y^{2} \\ & y^{2}=4 \quad y= \pm 2 \end{aligned}$	Shown	2	M1 for substituting $y=-2$ into $\frac{4}{y}+y=2 y$ or $\frac{4}{-2}+-2=2 \times-2$ or any correct rearrangement A1 for showing that LHS \& RHS both $=-4$ OR M1 $4+y^{2}=2 y^{2}$ A1 $y= \pm 2$ from a correct process
9			$S=20 B+30 T$	3	$\begin{aligned} & \text { B3 for } S=20 B+30 T \text { oe } \\ & (\text { B2 for } 20 B+30 T \text { or } S=20 B+T \text { or } S=B+30 T \text { or } \\ & S=30 B+20 T \text {) } \\ & \text { (B1 for } S=\text { a linear expression in } B \text { and } T \text {, or } 20 B \text { or } 30 T \text {) } \end{aligned}$
10		$2 \times 5: 3 \times 10=10: 30=1: 3$	1:3	2	M1 $2 \times 5: 3 \times 10$ or $2 \times 1: 3 \times 2$ or sight of 10 and 30 or 10 p and 30 p A1 for 1:3 cao (SC B1 for $3: 1$ or $1 \mathrm{p}: 3 \mathrm{p}$ or $10: 30$ or $5: 15$ or $10 \mathrm{p}: 30 \mathrm{p}$)

1380_3H					
Question		Working	Answer	Mark	Notes
11		$\begin{aligned} & \text { Area of } A B C D=12^{2}=144 \\ & A N=3 \mathrm{~cm} \\ & \text { Area of } A N D=\frac{1}{2} \times 3 \times 12=18 \mathrm{~cm}^{2} \\ & M B=6 \mathrm{~cm}, N B=9 \mathrm{~cm} \\ & \text { Area of } M B N=\frac{1}{2} \times 6 \times 9=27 \mathrm{~cm}^{2} \\ & \text { Area of shaded region }=144-27-18 \\ & \text { OR } \\ & A N=3 \mathrm{~cm} \text { or } B N=9 \mathrm{~cm} \\ & \text { Area of rect } \mathbf{X} \text { on } C M=6 \times 9=54 \\ & \text { Area of triangle } \mathbf{Y}=\frac{1}{2} \times 6 \times 9=27 \\ & \text { Area of top triangle } \mathbf{Z}=\frac{1}{2} \times 3 \times 12=18 \\ & \text { Area of shaded region }=54+27+18 \end{aligned}$	$99 \mathrm{~cm}^{2}$	6	B1 $A N=3$ or $B N=9$ or $C M=6$ or $M B=6$ M1 Area of $A B C D=12 \times 12(=144)$ M1 Area of $A N D=\frac{1}{2} \times{ }^{\prime} 3 \times 12(=18)$ M1 Area of $M B N=\frac{1}{2} \times{ }^{\prime} 6 \times^{\prime} 9^{\prime}(=27)$ M1 (dep on at least 1 previous M1) for (Area of CMND =) '144' - '18' - '27' A1 cao OR B1 $A N=3$ or $B N=9$ or $C M=6$ or $M B=6$ M1 Area of rect on $C M=$ ' 6 ' \times ' 9 ' ($=54$) M1 area of adj $\Delta=\frac{1}{2} \times \times^{\prime} 6^{\prime} 9^{\prime}(=27)$ M1 area of top $\Delta=\frac{1}{2} \times{ }^{\prime} 3 \times 12 \quad(=18)$ M1 (dep on at least 1 previous M1) for ' $54^{\prime}+{ }^{\prime} 27^{\prime}+{ }^{\prime} 18$ ' A1 cao

Question		Working	Answer	Mark	Notes
14	(a)		643000	1	B1 cao
	(b)	$2 \times 10^{7} \times 8 \times 10^{-12}=16 \times 10^{7-12}=16 \times 10^{-5}=1.6 \times 10^{-4}$	1.6×10^{-4}	2	M1 for $16 \times 10^{7-12}$ or 16×10^{-5} or 0.00016 or 1.6×10^{n} where n is an integer or $\frac{16}{100000}$ oe or $\frac{16}{100000}$ simplified correctly A1 cao
15	(a)		$2 x(x-2 y)$	2	B2 cao (B1 2x(linear expression) or $x(2 x-4 y)$ or $2\left(x^{2}-2 x y\right)$ or $n x(x-2 y)$ where n is an integer)
	(b)	$p^{2}-6 p+8$	$(p-4)(p-2)$	2	M1 for $(p \pm 4)(p \pm 2)$ or $(p+a)(p+b)$ with $a, b \neq 0, a+b=-6$ or $a b=8$ or $p(p-2)-4(p-2) \text { or } p(p-4)-2(p-4)$ A1 (accept others letters)
	(c)	$\frac{(x+2)^{2}}{x+2}=\frac{(x+2)}{1}$	$x+2$	1	$\text { B1 } x+2 \text { or } \frac{(x+2)}{1}$
	(d)		$6 a^{5} b^{2}$	2	B2 cao (B1 exactly 2 out of 3 terms correct in a product or $a^{5} b^{2}$ or $6 a^{2+3} b^{1+1}$)

1380					
Question		Working	Answer	Mark	Notes
16			Correct box plot	3	M1 for $32+38(=70)$ or UQ as 70, may be stated or plotted in a diagram M1 for at least 3 correctly plotted points (min 18, LQ 32, median 57, UQ ‘70', max 86) with box or whiskers drawn in A1 cao SC : B1 for a fully correct box and whisker diagram with min 18, max 86, LQ 32, median 38, UQ 57
17	(a)	$\frac{E D}{8}=\frac{6}{4} E D=12$	12	2	M1 for $\frac{6}{4}$ oe or $\frac{4}{6}$ oe or $\frac{8}{4}$ oe or $\frac{4}{8}$ oe (accept all these written as ratios) A1 cao
	(b)	$\begin{aligned} & \frac{2}{5} \times 25 \\ & \text { OR } \\ & 4: 6=A C: C D \\ & (25 \div(4+6)) \times 4 \end{aligned}$	10	2	M1 $\frac{2}{5} \times 25$ oe A1 cao OR M1 $(25 \div(4+6)) \times 4$ A1 cao OR M1 for $25 \div(1+1.5)$ A1 cao

1380_3H					
Question		Working	Answer	Mark	Notes
20			E, B, F, C, D, A	3	B3 all correct (B2 4,5 correct) (B1 2 or 3 correct)
21	(a)	$\begin{aligned} & P=3 x+\frac{\pi x}{2}=x\left(3+\frac{\pi}{2}\right) \\ & x=\frac{P}{\left(3+\frac{\pi}{2}\right)} \end{aligned}$ OR $\begin{aligned} & 2 P=6 x+\pi x=x(6+\pi) \\ & x=\frac{2 P}{(6+\pi)} \end{aligned}$	$x=\frac{P}{\left(3+\frac{\pi}{2}\right)}$	2	M1 for $x\left(3+\frac{\pi}{2}\right)$ A1 for $x=\frac{P}{\left(3+\frac{\pi}{2}\right)}$ oe OR M1 $2 P=x(6+\pi)$ A1 $x=\frac{2 P}{(6+\pi)}$ oe SC : B1 for $x=\frac{2 P}{3+\pi}$ oe or $x=\frac{P}{6+\pi}$ SC Using $\pi=3.14$, then B1 for $x=\frac{P}{4.57}$ or $\frac{2 P}{9.14}$

1380_3H					
Question		Working	Answer	Mark	Notes
21	(b)	$A=x^{2}+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}=\left(1+\frac{\pi}{8}\right) x^{2}$	$k=1+\frac{\pi}{8}$	3	M1 for $A=x^{2}+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2} \quad$ (condone missing
					brackets around $\frac{x}{2}$) or $A=x^{2}+\frac{\pi}{2} \times \frac{x^{2}}{4}$ oe
					M1 for $A=x^{2}\left(1+\frac{\pi}{8}\right)$ oe or $k=1+\frac{\pi}{2}\left(\frac{1}{2}\right)^{2}$
					A1 cao
					SC B1 for $A=x^{2}+\frac{\pi}{2} \times \frac{x^{2}}{2}$
					$\text { SC B2 for } k=\left(1+\frac{\pi}{4}\right)$

1380_3H					
Question		Working	Answer	Mark	Notes
22		$\begin{aligned} & (2+\sqrt{2})(3+\sqrt{8})=6+2 \sqrt{8}+3 \sqrt{2}+\sqrt{2} \times \sqrt{8} \\ & =10+3 \sqrt{2}+2 \sqrt{8} \\ & 10+3 \sqrt{2}+2 \sqrt{8}=10+3 \sqrt{2}+2 \times 2 \times \sqrt{2}=10+7 \sqrt{2} \end{aligned}$ OR $\begin{aligned} & (2+\sqrt{2})(3+\sqrt{8})=(2+\sqrt{2})(3+2 \sqrt{2}) \\ & =6+4 \sqrt{2}+3 \sqrt{2}+\sqrt{2} \times 2 \sqrt{2} \\ & 6+7 \sqrt{2}+\sqrt{2} \times 2 \sqrt{2}=6+7 \sqrt{2}+2 \times 2 \end{aligned}$	$10+7 \sqrt{2}$	4	M1 3 or 4 out 4 terms correct $6,2 \sqrt{8}, 3 \sqrt{2}, \sqrt{2} \sqrt{8}$ - terms may be simplified and could be in a list M1 for 10 from $6+\sqrt{2} \sqrt{8}$ B1 $\sqrt{8}=\sqrt{4} \times \sqrt{2}$ oe or $\sqrt{8}=\sqrt{4 \times 2}$ A1 $10+7 \sqrt{2}$ cao OR B1 $\sqrt{8}=\sqrt{4} \times \sqrt{2}$ or $\sqrt{8}=\sqrt{4 \times 2}$ M1 3 or 4 out of 4 terms ft from the expansion of $(2+\sqrt{2})(3+2 \sqrt{2})$ 6, $2 \times 2 \sqrt{2}, 3 \sqrt{2}, 2 \times \sqrt{2} \sqrt{2}$ - terms may be simplified and could be in a list M1 for 10 from $6+2 \times \sqrt{2} \sqrt{2}$ A1 $10+7 \sqrt{2}$ cao

1380					
Question		Working	Answer	Mark	Notes
23					B1 b-a or $-\mathbf{a}+\mathbf{b}$
	(b)	$\begin{aligned} & \overrightarrow{B K}=2 \times \overrightarrow{A B}=2 \times(\mathbf{b}-\mathbf{a}) \\ & \overrightarrow{C K}=\overrightarrow{C B}+\overrightarrow{B K}=\mathbf{a}+2 \times(\mathbf{b}-\mathbf{a}) \end{aligned}$	$2 \mathrm{~b}-\mathbf{a}$	3	M1 for a correct vector statement for $\overrightarrow{C K}$ eg. $\overrightarrow{C K}=\overrightarrow{C A}+\overrightarrow{A K}$ or $\overrightarrow{C K}=\overrightarrow{C B}+\overrightarrow{B K}$ M 1 for $\overrightarrow{B K}=2 \overrightarrow{A B}$ or $\overrightarrow{B K}=2\left({ }^{\prime} \mathbf{b}-\mathrm{a}^{\prime}\right)$ or $\overrightarrow{A K}=3 \overrightarrow{A B}$ or $\overrightarrow{A K}=3$ (' $\mathbf{b}-\mathbf{a}^{\prime}$) (may be seen as part of a vector equation BUT $2(\mathbf{b}-\mathbf{a})$ or ' $2(\mathbf{b}-\mathbf{a}$)' or $3(\mathbf{b}-\mathbf{a})$ or ' $3(\mathbf{b}-\mathbf{a})$ ' by itself does not score M1) A1 $2 \mathbf{b}-\mathbf{a}$ or $-\mathbf{a}+2 \mathbf{b}$

11.

Diagram NOT accurately drawn
13.

																						T
0		0		20		-30			40		50		60			,		0		90		100
\square		\pm		1		H	H	+	H		H		H		4	H	\pm	H		1		H'Mark

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG031118 March 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

