

# AQA Level 2 Certificate in Further Mathematics Specimen Assessment Materials 8360

For exams June 2012 onwards For certification June 2012 onwards

#### AQA Level 2 Certificate in Further Mathematics - May 2011

You can get further copies of this booklet from:

AQA Logistics Centre (Manchester) Unit2 Wheel Forge Way Ashburton Park Trafford Park Manchester M17 1EH Telephone 0870 410 1036 Fax: 0161 953 1177

Or you can download a copy from our website aqa.org.uk/igcsemaths

Copyright ©2011 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications, including specimen assessment materials. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723). Registered address: AQA, Devas Street, Manchester M15 6EX

# Contents

| Background Information   | 4  |
|--------------------------|----|
| Introduction             | 4  |
| Paper 1 (Non-Calculator) | 5  |
| Mark Scheme              | 19 |
| Paper 2 (Calculator)     | 29 |
| Mark Scheme              | 45 |

### Introduction

This Level 2 Certificate in Further Mathematics qualification **fills the gap** for high achieving students by assessing their higher order mathematical skills, particularly in algebraic reasoning, in greater depth without infringing upon AS Level mathematics, thus preparing them fully to maximise their potential in further studies at Level 3. It offers the opportunity for stretch and challenge that builds on the Key Stage 4 curriculum and is intended as an additional qualification to the GCSE Mathematics, rather than as a replacement.

The content assumes prior knowledge of the Key Stage 4 Programme of Study and covers the areas of algebra and geometry, which are crucial to further study in the subject, in greater depth and breadth. This new qualification places an emphasis on higher order technical proficiency, rigorous argument and problem solving skills. It also gives an introduction to calculus and matrices and develops further skills in trigonometry, functions and graphs.

The AQA Level 2 Certificate in Further Mathematics is an untiered Level 2 linear qualification for learners who

- either already have, or are expected to achieve grades A and A\* in GCSE mathematics
- are likely to progress to A-Level study in mathematics and possibly further mathematics.

It will be graded on a five-grade scale: A\* with Distinction (A^), A\*, A, B and C.

The qualification is designed to be assessed as a full Level 2 mathematics qualification in its own right and is therefore not dependent on GCSE mathematics.

Therefore there are no prior learning requirements but there is the expectation that candidates have some assumed knowledge. The specification content is set out in six distinct topic areas although questions will be asked that range across these topics.

- Number
- Algebra
- Co-ordinate Geometry (2 dimensions only)
- Calculus
- Matrix Transformations
- Geometry

#### Papers

These specimen papers have been designed to exemplify the question papers, to be set for our Level 2 Certificate in Further Mathematics Specification, for first qualification in June 2012. The associated mark scheme follows each paper.

The question papers should be read in conjunction with AQA Level 2 Certificate in Further Mathematics Specification 2011 onwards. This specification is available on the website http://web.aqa.org.uk/qual/igcse/maths.php

The question papers are intended to represent the length and balance of the papers that will be set for the examination and to indicate the types of questions that will be used. It must be emphasised, however, that the questions have not been subjected to the rigorous review that would take place with questions before use in examination.

#### Mark schemes

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

| Centre Number       |  |  | Candidate Number |  |  |
|---------------------|--|--|------------------|--|--|
| Surname             |  |  |                  |  |  |
| Other Names         |  |  |                  |  |  |
| Candidate Signature |  |  |                  |  |  |



Certificate in Further Mathematics Level 2

### **Further Mathematics**

8360/1

## Level 2

### **Specimen Paper 1**

### **Non-Calculator**

#### For this paper you must have:

- mathematical instruments.
- You may **not** use a calculator.

#### Time allowed

1 hour 30 minutes

#### Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

| For Exam | For Examiner's Use  |  |  |  |  |
|----------|---------------------|--|--|--|--|
| Examine  | Examiner's Initials |  |  |  |  |
| Pages    | Mark                |  |  |  |  |
| 3        |                     |  |  |  |  |
| 4 - 5    |                     |  |  |  |  |
| 6 - 7    |                     |  |  |  |  |
| 8 - 9    |                     |  |  |  |  |
| 10 - 11  |                     |  |  |  |  |
| 12 - 13  |                     |  |  |  |  |
| TOTAL    |                     |  |  |  |  |

Volume of sphere 
$$=rac{4}{3}\pi r^3$$

Surface area of sphere =  $4\pi r^2$ 

Volume of cone =  $\frac{1}{3}\pi r^2 h$ Curved surface area of cone =  $\pi r l$ 





In any triangle ABC

Area of triangle =  $\frac{1}{2}ab \sin C$ 

Sine rule  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

 $Cosine rule \ a^2 = b^2 + c^2 - 2bc \cos A$ 

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

#### The Quadratic Equation

The solutions of  $ax^2 + bx + c = 0$ , where  $a \neq 0$ , are given by  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

#### **Trigonometric Identities**

 $\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \qquad \qquad \sin^2 \theta + \cos^2 \theta \equiv 1$ 

Do not write outside the box



Page 7

3

| 2 (a) | The <i>n</i> th terms of two sequences are $4n + 13$ and $6n - 21$<br>Which term has the same value in each sequence?        | Do not write<br>outside the<br>box |
|-------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|       | Answer (3 marks)                                                                                                             |                                    |
| 2 (b) | The first five terms of a quadratic sequence are $4 \ 10 \ 18 \ 28 \ 40$<br>Work out an expression for the <i>n</i> th term. |                                    |
|       |                                                                                                                              |                                    |
|       |                                                                                                                              |                                    |
|       |                                                                                                                              |                                    |
|       | Answer (5 marks)                                                                                                             |                                    |



Do not write outside the box

A function f(x) is defined as

4

 $f(x) = 3x 0 \le x < 1$  $= 3 1 \le x < 3$  $= 12 - 3x 3 \le x \le 4$ 

Calculate the area enclosed by the graph of y = f(x) and the *x*-axis.









|                                                                                  | Do not write<br>outside the |
|----------------------------------------------------------------------------------|-----------------------------|
| Write $\sqrt{75} + \sqrt{12}$ in the form $a\sqrt{h}$ where a and h are integers | box                         |
|                                                                                  |                             |
|                                                                                  |                             |
|                                                                                  |                             |
| Answer                                                                           |                             |
|                                                                                  |                             |
| $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{2}} + 1$                                    |                             |
| Rationalise and simplify $\frac{1}{\sqrt{2}-3}$                                  |                             |
|                                                                                  |                             |
|                                                                                  |                             |
| •••••••••••••••••••••••••••••••••••••••                                          |                             |
|                                                                                  |                             |
|                                                                                  |                             |
| Answer (5 marks)                                                                 |                             |
|                                                                                  |                             |
|                                                                                  |                             |
| The points $A(1, 7)$ and $B(24, 22)$ are on a straight line $ACB$                |                             |
| The points $A(-1, -7)$ and $B(24, 23)$ are on a straight line ACB.               |                             |
| <i>AC</i> : <i>CB</i> = 2:3                                                      |                             |
|                                                                                  |                             |
| <i>AC</i> : <i>CB</i> = 2:3                                                      |                             |
| AC: CB = 2:3<br>Work out the coordinates of <i>C</i> .                           |                             |
| AC: CB = 2:3<br>Work out the coordinates of C.                                   |                             |
| AC: CB = 2:3<br>Work out the coordinates of C.                                   |                             |
| AC: CB = 2:3<br>Work out the coordinates of C.                                   |                             |
| AC: CB = 2:3<br>Work out the coordinates of C.                                   |                             |
| AC: CB = 2:3<br>Work out the coordinates of C.                                   |                             |
| AC : CB = 2 : 3<br>Work out the coordinates of C.                                |                             |
| AC : CB = 2 : 3<br>Work out the coordinates of C.                                |                             |
| AC : CB = 2 : 3<br>Work out the coordinates of C.                                |                             |
| AC : CB = 2 : 3<br>Work out the coordinates of C.                                |                             |
|                                                                                  |                             |

Page 14

| 12     | Prove that $\tan^2 x - 1 \equiv \frac{1 - 2\cos^2 x}{\cos^2 x}$                   |
|--------|-----------------------------------------------------------------------------------|
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        | (3 marks)                                                                         |
|        |                                                                                   |
| 13 (a) | Work out the coordinates of the stationary point for the curve $y = x^2 + 3x + 4$ |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |
|        | · · · · · · · · · · · · · · · · · · ·                                             |
|        | Answer (,,                                                                        |
| 13 (b) | Explain why the equation $x^2 + 3x + 4 = 0$ has no real solutions.                |
|        |                                                                                   |
|        |                                                                                   |
|        | (2 marks)                                                                         |
|        |                                                                                   |
|        |                                                                                   |
|        |                                                                                   |



Do not write outside the box

С F Α В Ε Prove that AC bisects angle BCD. Give reasons at each stage of your working. ..... (4 marks) **END OF QUESTIONS** 

13

A, B, C and D are points on the circumference of a circle such that BD is parallel to the

15

tangent to the circle at A.

Version 1.0



# **Level 2 Certificate in Further Mathematics**

Specimen Paper 1 8360/1



#### **Mark Schemes**

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

It is not possible to indicate all the possible approaches to questions that would gain credit in a 'live' examination. The principles we work to are given in the glossary on page 3 of this mark scheme.

- Evidence of any method that would lead to a correct answer, if applied accurately, is generally worthy
  of credit.
- Accuracy marks are awarded for correct answers following on from a correct method. The correct
  method may be implied, but in this qualification there is a greater expectation that method will be
  appropriate and clearly shown.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

#### Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

- **M** Method marks are awarded for a correct method which could lead to a correct answer.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- **B** Marks awarded independent of method.
- **M Dep** A method mark dependent on a previous method mark being awarded.
- **B Dep** A mark that can only be awarded if a previous independent mark has been awarded.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- **SC** Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- **oe** Or equivalent. Accept answers that are equivalent.

eg, accept 0.5 as well as  $\frac{1}{2}$ 

### Paper 1 - Non-Calculator

| Q    | Answer                               | Mark | Comments                      |
|------|--------------------------------------|------|-------------------------------|
|      |                                      |      |                               |
| 1(a) | 21x - 7 + 2x + 14 = 18x - 3          | M1   | Allow one error               |
|      | Their $21x + 2x - 18x = -3 + 7 - 14$ | M1   | Allow one rearrangement error |
|      | 5x = -10                             | A1ft |                               |
|      | <i>x</i> = -2                        | A1ft | Must have gained M2 for ft    |
| 1(b) | 3x + 10 = 16                         | M1   |                               |
|      | <i>x</i> = 2                         | A1   |                               |

| 2(a) | 4n + 13 = 6n - 21                                                                                                                        | M1 | List terms in both sequences with 81 appearing in both lists                                                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 6n - 4n = 13 + 21                                                                                                                        | M1 | 4n + 13 = 81 or $6n - 21 = 81$                                                                                                                                                             |
|      | 17                                                                                                                                       | A1 |                                                                                                                                                                                            |
| 2(b) | Attempt at first differences (at least<br>three)<br>6 8 10 12                                                                            | M1 | Alternative - Works with $an^2 + bn + c$<br>Attempt to find at least two of the three<br>equations in a, b and c<br>eg, any two of $a + b + c = 4$<br>4a + 2b + c = 10<br>9a + 3b + c = 18 |
|      | Attempt at second differences (at least two) and divides their second difference by 2 to obtain coefficient of $n^2$<br>2 2 2 and $1n^2$ | M1 | Eliminates one letter from any two of their<br>equations<br>eg, $3a + b = 6$<br>or $5a + b = 8$<br>or $8a + 2b = 14$                                                                       |
|      | Subtracts $n^2$ from original sequence<br>4 - 1 10 - 4 18 - 9 28 - 16<br>40 - 25 (= 3 6 9 12 15)                                         | M1 | Eliminates the same letter from a different pair of their equations                                                                                                                        |
|      | Attempt at differences of their<br>3 6 9 12 15 or 3 <i>n</i>                                                                             | M1 | Attempt at solving their two equations in two variables                                                                                                                                    |
|      | $n^2 + 3n$                                                                                                                               | A1 | (a = 1, b = 3, c = 0)<br>$n^2 + 3n$                                                                                                                                                        |

| Q    | Answer                                         | Mark  | Comments                                                           |
|------|------------------------------------------------|-------|--------------------------------------------------------------------|
| 3(a) | U shape crossing <i>x</i> -axis in two places  | B1    |                                                                    |
|      | –3 and 3 marked                                | B1    |                                                                    |
| 3(b) | -2, -1, 0, 1, 2                                | B2    | Any 3 of these B1<br>These 5 plus -3 and 3 B1                      |
| 4    | Graph drawn                                    | B3    | B1 For each part<br>Accept vertices of trapezium clearly<br>marked |
|      | $\frac{1}{2}$ (4 + 2) × 3                      | M1    | Attempt to find their area                                         |
|      | 9                                              | A1 ft |                                                                    |
| 5    | Attempt to work out the scale on the<br>v-axis | M1    |                                                                    |

| 5 | Attempt to work out the scale on the<br>y-axis<br>eg, 0, 2, 4, seen as labels or<br>statement that y-axis goes up<br>in 2s or evidence that<br>y intercept is 2 for given line                               | M1 |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Attempt to work out the scale on the<br><i>x</i> -axis<br>eg, 0, 1, 2, seen as labels or<br>evidence of using gradient of<br>2 for given line and scale on<br><i>y</i> -axis to work out horizontal<br>scale | M1 |    |
|   | Evidence of working out gradient<br>eg, triangle drawn on graph or<br>2 ÷ 2 or 1                                                                                                                             | M1 |    |
|   | y = x - 3                                                                                                                                                                                                    | A1 | ое |

| Q | Answer                                      | Mark | Comments                                 |
|---|---------------------------------------------|------|------------------------------------------|
| 6 | Attempts division before subtraction        | B1   |                                          |
| Ŭ |                                             |      |                                          |
|   | $\frac{7}{4} \div \frac{9}{8}$              | M1   | Allow one error in numerators            |
|   | <u>14</u><br>9                              | A1   | oe fraction                              |
|   | $\frac{24}{9} - \text{their } \frac{14}{9}$ | M1   |                                          |
|   | <u>10</u><br>9                              | A1ft | ое                                       |
|   | 5                                           |      | ft $2\frac{2}{3}$ - their $\frac{14}{9}$ |

| 7(a) | $x = 9^{\frac{3}{2}}$                                                                                                   | M1 | oe |
|------|-------------------------------------------------------------------------------------------------------------------------|----|----|
|      | 27                                                                                                                      | A1 |    |
| 7(b) | $\frac{1}{5^2} \text{ or } y^{-1} = 25 \text{ or } y^{\frac{1}{2}} = \frac{1}{5}$<br>or $\frac{1}{y^{\frac{1}{2}}} = 5$ | M1 |    |
|      | $\frac{1}{25}$                                                                                                          | A1 | oe |

| 8 | cd = 8(c-d)            | M1 | or $c = \frac{8c - 8d}{d}$ |
|---|------------------------|----|----------------------------|
|   | cd = 8c - 8d           | M1 |                            |
|   | cd + 8d = 8c           | M1 |                            |
|   | $d = \frac{8c}{(c+8)}$ | A1 |                            |

| 9 | 270 – 17 (= 253) or 270 + 17 (= 287) | M1 |  |
|---|--------------------------------------|----|--|
|   | 253 and 287                          | A1 |  |

| Q     | Answer                                                               | Mark | Comments                                           |
|-------|----------------------------------------------------------------------|------|----------------------------------------------------|
| 10(a) | $5\sqrt{3}$ (+) $2\sqrt{3}$                                          | M1   |                                                    |
|       | 7 \sqrt{3}                                                           | A1   |                                                    |
| 10(b) | $\frac{(2\sqrt{2} + 1)(\sqrt{2} + 3)}{(\sqrt{2} - 3)(\sqrt{2} + 3)}$ | M1   |                                                    |
|       | Num $2 \times 2 + \sqrt{2} + 6\sqrt{2} + 3$                          | M1   |                                                    |
|       | $7+7\sqrt{2}$                                                        | A1   |                                                    |
|       | Denom 2-9                                                            | A1   |                                                    |
|       | $-1 - \sqrt{2}$                                                      | A1ft | Allow – (1 + $\sqrt{2}$ )<br>ft If both Ms awarded |
| 11    | 241 (= 25) or 237 (= 30)                                             | M1   |                                                    |
|       | $\frac{2}{5}$ × their 25 (= 10)                                      | M1   | $\frac{3}{5}$ × their 25 (= 15)                    |
|       | or $\frac{2}{5}$ × their 30 (=12)                                    |      | or $\frac{3}{5}$ × their 30 (= 18)                 |
|       | -1 + their 10 (= 9)                                                  | M1   | 24 – their 15 (= 9)                                |
|       | or -7 + their 12 (= 5)                                               |      | or 23 – their 18 (= 5)                             |
|       | (9, 5)                                                               | A1   |                                                    |
| 12    | $\frac{\sin^2 x}{\cos^2 x} - 1$                                      | M1   | Use of $\tan x \equiv \frac{\sin x}{\cos x}$       |
|       | $\frac{\sin^2 x - \cos^2 x}{\cos^2 x}$                               | M1   |                                                    |
|       | $\frac{1-\cos^2 x-\cos^2 x}{\cos^2 x}$                               | A1   |                                                    |

| Q      | Answer                                                                                                                                                                                                                   | Mark | Comments                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13(a)  | $\left(\frac{dy}{dx}\right) = 2x + 3$                                                                                                                                                                                    | M1   | $(x+1\frac{1}{2})^2-1\frac{1}{2}^2+4$                                                                                                                                                                                                                                                                                                                                                           |
|        | $x = -1\frac{1}{2}$                                                                                                                                                                                                      | A1   | oe                                                                                                                                                                                                                                                                                                                                                                                              |
|        | $y = (-1\frac{1}{2})^2 + 3(-1\frac{1}{2}) + 4$                                                                                                                                                                           | M1   | $(x+1\frac{1}{2})^2+1.75$                                                                                                                                                                                                                                                                                                                                                                       |
|        | $y = 1\frac{3}{4}$                                                                                                                                                                                                       | A1ft | oe turning points at $(-1\frac{1}{2}, 1\frac{3}{4})$                                                                                                                                                                                                                                                                                                                                            |
| (0(1)) |                                                                                                                                                                                                                          | 50   | Allow follow through if first M1 awarded                                                                                                                                                                                                                                                                                                                                                        |
| 13(b)  | Sketch showing turning point above<br><i>x</i> -axis and statement that curve<br>never crosses <i>x</i> -axis so no solution<br>(B1 For sketch showing turning<br>point above <i>x</i> -axis with statement<br>not made) | B2   | <ul> <li>B2 A complete valid explanation using correct mathematical language</li> <li>eg, stating that b<sup>2</sup> - 4ac = - 7 which is &lt; 0 so implies no real solution due to a negative number not having a real square root</li> <li>B1 For a partially correct explanation using correct mathematical language</li> <li>eg, stating that b<sup>2</sup> - 4ac = - 7 which is</li> </ul> |
|        |                                                                                                                                                                                                                          |      | < 0 so implies no real solution                                                                                                                                                                                                                                                                                                                                                                 |

| 14 | $BD = 3\sqrt{2} \cos 45 (= 3)$<br>or $AB = 3\sqrt{2} \sin 45 (= 3)$       | M1 |  |
|----|---------------------------------------------------------------------------|----|--|
|    | $BC = \text{their } \frac{AB}{\tan 60} = \left(\frac{3}{\sqrt{3}}\right)$ | M1 |  |
|    | $BC = \frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$                | M1 |  |
|    | $3 - \sqrt{3}$                                                            | A1 |  |

| Q  | Answer                               | Mark | Comments                                  |
|----|--------------------------------------|------|-------------------------------------------|
|    | Ι                                    | 1    |                                           |
| 15 | $\angle BCA = \angle BAE$            | B1   | oe                                        |
|    | Alternate segment theorem            |      | Correct geometrical reasons must be given |
|    | $\angle BAE = \angle DBA$            | B1   | oe                                        |
|    | Alternate angles equal               |      | Correct geometrical reasons must be given |
|    | $\angle DBA = \angle ACD$            | B1   | oe                                        |
|    | Angles in the same segment are equal |      | Correct geometrical reasons must be given |
|    | So $\angle BCA = \angle ACD$         | B1   | SC2 For correct argument without reasons  |
|    | AC bisects $\angle BCD$              |      |                                           |

|                     |  |  | Candidate Number |  |  |
|---------------------|--|--|------------------|--|--|
| Surname             |  |  |                  |  |  |
| Other Names         |  |  |                  |  |  |
| Candidate Signature |  |  |                  |  |  |



Certificate in Further Mathematics Level 2

### **Further Mathematics**

8360/2

# Level 2

### **Specimen Paper 2**

### Calculator

#### For this paper you must have:

- a calculator
- mathematical instruments.

#### Time allowed

2 hours

#### Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.

- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

| For Exami | iner's Use   |
|-----------|--------------|
| Examiner  | r's Initials |
| Pages     | Mark         |
| 3         |              |
| 4 - 5     |              |
| 6 - 7     |              |
| 8 - 9     |              |
| 10 - 11   |              |
| 12 - 13   |              |
| 14 - 15   |              |
| 16        |              |
| TOTAL     |              |

Volume of sphere 
$$=rac{4}{3}\pi r^3$$

Surface area of sphere =  $4\pi r^2$ 

Volume of cone =  $\frac{1}{3}\pi r^2 h$ Curved surface area of cone =  $\pi r l$ 





In any triangle ABC

Area of triangle =  $\frac{1}{2}ab \sin C$ 

Sine rule  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

 $Cosine rule \ a^2 = b^2 + c^2 - 2bc \cos A$ 

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

#### The Quadratic Equation

The solutions of  $ax^2 + bx + c = 0$ , where  $a \neq 0$ , are given by  $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$ 

#### **Trigonometric Identities**

 $\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \qquad \qquad \sin^2 \theta + \cos^2 \theta \equiv 1$ 

Do not write outside the box

|       | Answer <b>all</b> questions in the spaces provided.                                    |
|-------|----------------------------------------------------------------------------------------|
| 1     | a, b, c and $d$ are consecutive integers.                                              |
|       | Explain why $ab + cd$ is always even.                                                  |
|       |                                                                                        |
|       |                                                                                        |
| 2     | Work out the distance between the point $A(1, 4)$ and the point $B(7, 12)$ .           |
|       |                                                                                        |
|       |                                                                                        |
|       | Answer units (2 marks)                                                                 |
| 3     | The <i>n</i> th term of a sequence is given by $\frac{3n+1}{6n-5}$                     |
| 3 (a) | Write down the first, tenth and hundredth terms of the sequence.                       |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       | Answer, ,, ,, ,, ,                                                                     |
| 3 (b) | Show that the limiting value of $\frac{3n+1}{6n-5}$ is $\frac{1}{2}$ as $n \to \infty$ |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       | (2 marks)                                                                              |

Page 31

3

### Turn over ►

| 4     | The function $f(x)$ is defined as $f(x) = x^2 + x$                                |
|-------|-----------------------------------------------------------------------------------|
| 4 (a) | Write down the value of f(7)                                                      |
|       | Answer (1 mark)                                                                   |
| 4 (b) | Solve $f(x) = 0$                                                                  |
|       |                                                                                   |
|       |                                                                                   |
|       | Answer (2 marks)                                                                  |
| 4 (c) | Write an expression for $f(x+1) - f(x)$<br>Give your answer in its simplest form. |
|       |                                                                                   |
|       |                                                                                   |
|       |                                                                                   |
|       |                                                                                   |
|       | Answer (3 marks)                                                                  |

5 Do not write outside the box The diagram shows triangle ABC with AB = AC. 5 Α Not drawn accurately 4*x* – 5 2*x* + 3 В С 3x - 1Show that triangle ABC is equilateral. (5 marks) 6 x, y and z are three quantities such that x: y = 3: 2 and y : z = 5 : 4Express the ratio x : z in its simplest form. 



| 8 |     | The function f(x) is defined as $f(x) = \frac{1}{x^2 - 3x - 10}$ |
|---|-----|------------------------------------------------------------------|
|   |     | f(x) has domain all x except $x = a$ and $x = b$                 |
|   |     | Work out <i>a</i> and <i>b</i> .                                 |
|   |     |                                                                  |
|   |     |                                                                  |
|   |     |                                                                  |
|   |     |                                                                  |
|   |     | Answer                                                           |
| 9 | (a) | Expand and simplify $(x-5)(x^2+4x-2)$                            |
|   |     |                                                                  |
|   |     |                                                                  |
|   |     |                                                                  |
|   |     |                                                                  |
|   |     |                                                                  |
|   |     | Answer (4 marks)                                                 |
| 9 | (b) | Answer                                                           |
| 9 | (b) |                                                                  |
| 9 | (b) | Factorise fully $(x^2 - 16) - (x - 4)(3x + 5)$                   |
| 9 | (b) |                                                                  |
| 9 | (b) | Factorise fully $(x^2 - 16) - (x - 4)(3x + 5)$                   |
| 9 | (b) | Factorise fully $(x^2 - 16) - (x - 4)(3x + 5)$                   |



| 40 |                                                             |
|----|-------------------------------------------------------------|
| 12 | <i>n</i> is an integer.                                     |
|    | Prove that $(n-2)^2 + n(8-n)$ is always a multiple of 4.    |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    | (3 marks)                                                   |
| 13 | Solve the simultaneous equations $y^2 = x + 3$ and $y = 2x$ |
|    | Do <b>not</b> use trial and improvement.                    |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    |                                                             |
|    | Answer (5 marks)                                            |
|    |                                                             |

Page 37



| 15 | A triangle has sides 10.2 cm, 6.8 cm and 5.7 cm.                                                                               |
|----|--------------------------------------------------------------------------------------------------------------------------------|
|    | Work out the area of the triangle.                                                                                             |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    | <br>Э                                                                                                                          |
|    | Answercm <sup>2</sup> (5 marks)                                                                                                |
| 16 | Work out the equation of the perpendicular bisector of $P(3, -1)$ and $Q(5, 7)$ .<br>Give your answer in the form $y = ax + b$ |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    |                                                                                                                                |
|    | Answer                                                                                                                         |

11

### Turn over ►

15



1

| 17 (c) | Calculate the angle between the planes VBC and ABCD.                  |
|--------|-----------------------------------------------------------------------|
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        | Answer degrees (3 marks)                                              |
| 18     | Solve the equation $\cos^2 x = 0.8$ for $0^\circ \le x \le 360^\circ$ |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        | Answer (3 marks)                                                      |
| 19     | $y = x^4(2x + 5)$                                                     |
|        | Work out the rate of change of y with respect to x when $x = 2$       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        |                                                                       |
|        | Answer (5 marks)                                                      |

13

# 17

# Turn over ►



| 21 | Factorise fully $x^3 - 4x^2 - 11x + 30$ |
|----|-----------------------------------------|
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    |                                         |
|    | Answer (6 marks)                        |
|    |                                         |

Turn over for the next question

Page 43



16

7

Version 1.0



# **Level 2 Certificate in Further Mathematics**

Specimen Paper 2 8360/2



#### **Mark Schemes**

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

It is not possible to indicate all the possible approaches to questions that would gain credit in a 'live' examination. The principles we work to are given in the glossary on page 3 of this mark scheme.

- Evidence of any method that would lead to a correct answer, if applied accurately, is generally worthy of credit.
- Accuracy marks are awarded for correct answers following on from a correct method. The correct
  method may be implied, but in this qualification there is a greater expectation that method will be
  appropriate and clearly shown.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

#### Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

- M Method marks are awarded for a correct method which could lead to a correct answer.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- **B** Marks awarded independent of method.
- **M Dep** A method mark dependent on a previous method mark being awarded.
- **B Dep** A mark that can only be awarded if a previous independent mark has been awarded.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- **SC** Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- **oe** Or equivalent. Accept answers that are equivalent.

eg, accept 0.5 as well as  $\frac{1}{2}$ 

# Paper 2 - Calculator

| Q        | Answer                                                                          | Mark | Comments                                             |
|----------|---------------------------------------------------------------------------------|------|------------------------------------------------------|
|          |                                                                                 |      |                                                      |
| 1        | Any consecutive pair contains an even (and an odd)                              | M1   | n(n + 1) + (n + 2)(n + 3)                            |
|          | Even × odd = even                                                               | M1   | $n^{2} + n + n^{2} + 3n + 2n + 6$<br>Allow 1 error   |
|          | Even + even = even                                                              | A1   | $2(n^2 + 3n + 3)$ so even                            |
| 2        | $\sqrt{((7-1)^2+(12-4)^2)}$                                                     | M1   |                                                      |
|          | 10                                                                              | A1   |                                                      |
| 3(a)     | 4<br><u>31</u><br><u>55</u><br><u>301</u><br><u>595</u>                         | B2   | B1 For two correct<br>oe                             |
| 3(b)     | Reference to $3n + 1 \rightarrow 3n$ or $6n - 5 \rightarrow 6n$ when n is large | B1   | oe<br>Must include reference to <i>n</i> being large |
|          | $\frac{3n}{6n}$ cancelled to $\frac{1}{2}$                                      | B1   |                                                      |
| Alt 3(b) | $\frac{\frac{3n}{n} + \frac{1}{n}}{\frac{6n}{n} - \frac{5}{n}}$                 | M1   |                                                      |
|          | $\frac{3}{6}$ since $\frac{1}{n}$ and $\frac{5}{n} \to 0$ as $n \to \infty$     | A1   | ое                                                   |
| 4(a)     | 56                                                                              | B1   |                                                      |
| 4(b)     | $x\left(x+1\right)=0$                                                           | M1   |                                                      |
|          | 0 and -1                                                                        | A1   |                                                      |
| 4(c)     | $(x+1)^2 + x + 1 - x^2 - x$                                                     | M1   | Allow 1 sign error                                   |
|          | $x^{2} + x + x + 1 + x + 1 - x^{2} - x$                                         | A1   | oe                                                   |
|          | 2x + 2  or  2(x + 1)                                                            | A1   |                                                      |

| Q | Answer                                                                  | Mark | Comments                                                     |
|---|-------------------------------------------------------------------------|------|--------------------------------------------------------------|
| 5 | 4x - 5 = 2x + 3                                                         | M1   |                                                              |
|   | 4x - 3 - 2x + 3<br>4x - 2x = 3 + 5                                      | M1   | Allow one sign error                                         |
|   | $\frac{4x}{x=4}$                                                        | A1ft |                                                              |
|   |                                                                         |      |                                                              |
|   | Substitute their <i>x</i> into one of the equal sides                   | M1   | eg, 4 × 4 – 5 or 2 × 4 = 3 (=11)                             |
|   | Shows BC is $3 \times 4 - 1 = 11$ and $11$ obtained for either AB or AC | A1   |                                                              |
| _ |                                                                         |      |                                                              |
| 6 | Attempt at common value for <i>y</i> in order to eliminate <i>y</i>     | M1   | Attempt to find two equations in order to eliminate <i>y</i> |
|   | eg, 3 × 5 : 2 × 5 and 5 × 2 : 4 × 2                                     |      | eg, $y = \frac{2x}{3}$ and $y = \frac{5z}{4}$                |
|   | 15 : 10 and 10 : 8                                                      | A1   | oe                                                           |
|   |                                                                         |      | eg, $\frac{2x}{3} = \frac{5z}{4}$ or $8x = 15z$              |
|   | 15 (: 10) : 8                                                           | A1   | 15 : 8                                                       |

| Q | Answer                                                                                          | Mark | Comments |
|---|-------------------------------------------------------------------------------------------------|------|----------|
|   | 1                                                                                               |      |          |
| 7 | x + 2x + 3x + 4x = 360                                                                          | M1   | ое       |
|   | $10x = 360 \ (x = 36)$                                                                          | M1   |          |
|   | Their 36 × 2 and their 36 × 3 or<br>their 36 × 4                                                | M1   |          |
|   | 36 + 144 = 180 or 72 + 108 = 180                                                                | M1   | ое       |
|   | Concludes that <i>AB</i> is parallel to <i>DC</i> because allied/interior angles add up to 180° | A1   |          |

| Alt 7 | x + 4x + 3x + 2x = 360                                                                                 | M1 | ое |
|-------|--------------------------------------------------------------------------------------------------------|----|----|
|       | $10x = 360 \ (x = 36)$                                                                                 | M1 |    |
|       | 5 <i>x</i> = 180                                                                                       | M1 |    |
|       | x + 4x = 5x, so<br>angle $A$ + angle $D$ = 180° or<br>3x + 2x = 5x, so<br>angle $C$ + angle $B$ = 180° | M1 | oe |
|       | Concludes that <i>AB</i> is parallel to <i>DC</i> because allied/interior angles add up to 180°        | A1 | oe |

| 8 | Sets denominator to zero<br>or attempts to factorise in the form<br>$(x \pm a)(x \pm b)$ where $ab = 10$ | M1   | $x^2 - 3x - 10 = 0$   |
|---|----------------------------------------------------------------------------------------------------------|------|-----------------------|
|   | (x+2)(x-5)                                                                                               | A1   |                       |
|   | – 2 (and) 5                                                                                              | B1ft | ft From their factors |

| Q | Answer | Mark | Comments |
|---|--------|------|----------|
|   |        |      |          |

| 9(a)     | $x^3 + 4x^2 - 2x$                   | M1    | Allow 1 error         |
|----------|-------------------------------------|-------|-----------------------|
|          | $-5x^2 - 20x + 10$                  | M1    | Allow 1 error         |
|          | $x^3 + 4x^2 - 2x - 5x^2 - 20x + 10$ | A1    |                       |
|          | $x^3 - x^2 - 22x + 10$              | A1ft  |                       |
| 9(b)     | (x+4)(x-4)-(x-4)(3x+5)              | M1    |                       |
|          | ( <i>x</i> – 4)()                   | M1    |                       |
|          | (x-4)(x+4-3x-5)                     | A1    |                       |
|          | (x-4)(-2x-1)                        | A1ft  | oe eg, $-(x-4)(2x+1)$ |
| Alt 9(b) | $(-)(3x^2 - 12x + 5x - 20)$         | M1    |                       |
|          | $-2x^2 + 7x + 4$                    | A1    |                       |
|          | (x+a)(-2x+b) ab = 4                 | M1    |                       |
|          | (x-4)(-2x-1)                        | A1 ft | oe eg, $-(x-4)(2x+1)$ |

| 10(a) | Attempt to work out both areas    | M1 | ie, $\frac{1}{2}(2x \times 2x)$ and $x(x + 4)$                                               |
|-------|-----------------------------------|----|----------------------------------------------------------------------------------------------|
|       |                                   |    | Allow one error                                                                              |
|       | Correct expression for both areas | A1 |                                                                                              |
|       | $2x^2 > x^2 + 4x$                 | A1 |                                                                                              |
| 10(b) | x(x-4) > 0                        | M1 | Attempts U-shaped sketch of $y = x^2 - 4x$<br>crossing <i>x</i> -axis at $x = 0$ and $x = 4$ |
|       | (x < 0  and) x > 4                | M1 |                                                                                              |
|       | 5                                 | A1 |                                                                                              |

| Q     | Answer                                                 | Mark  | Comments                                                   |
|-------|--------------------------------------------------------|-------|------------------------------------------------------------|
| 11    | (numerator) $a^2$                                      | B1    |                                                            |
|       | (denominator) a <sup>12</sup>                          | B1    |                                                            |
|       | a <sup>-10</sup>                                       | B1ft  | ft If numerator and denominator seen as powers of <i>a</i> |
| 12    | $n^2 - 4n + 4 + 8n - n^2$                              | M1    | Allow one error or omission                                |
|       | 4n + 4                                                 | A1    |                                                            |
|       | 4( <i>n</i> + 1)                                       | A1    | $(4n + 4) \div 4 = n + 1$                                  |
| 13    | Attempt to eliminate one variable eg, $(2x)^2 = x + 3$ | M1    | $y^2 = \frac{y}{2} + 3$                                    |
|       | $4x^2 - x - 3 = 0$                                     | A1    | $2y^2 - y - 6 = 0$                                         |
|       | Attempt at solution<br>eg, $(4x + 3)(x - 1)$           | M1    | (2y+3)(y-2)<br>Allow correct use of formula                |
|       | $x = -\frac{3}{4}$ (and) $x = 1$                       | A1    | $y = 2$ (and) $y = -1\frac{1}{2}$                          |
|       | $y = -1\frac{1}{2}$ (and) $y = 2$                      | A1    | $x = 1$ (and) $x = -\frac{3}{4}$                           |
| 14(a) | $x^2 + y^2 = 9$                                        | B1    |                                                            |
| 14(b) | $2^2 + 2^2 (= 8)$                                      | M1    |                                                            |
|       | Inside and valid justification                         | A1    | eg, inside and 8 < 9, inside and 2.8 $\dots$ < 3           |
| 14(c) | $(x-2)^2 + (y-4)^2 =$ their 9                          | B2 ft | $(x+2)^{2} + (y+4)^{2} =$ their 9 B1<br>ft Their part (a)  |

| Q  | Answer                                                            | Mark  | Comments                                                                                                                                       |
|----|-------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | $\cos A = \frac{6.8^2 + 5.7^2 - 10.2^2}{2 \times 6.8 \times 5.7}$ | M1    | $\cos B = \frac{10.2^2 + 5.7^2 - 6.8^2}{2 \times 10.2 \times 5.7}$<br>or<br>$\cos C = \frac{10.2^2 + 6.8^2 - 5.7^2}{2 \times 10.2 \times 6.8}$ |
|    | –0.32649() or –0.3265                                             | A1    | 0.77648() or 0.7765<br>or 0.8491()                                                                                                             |
|    | 109(.05)° or 109.06° or 109.1°                                    | A1    | 39(.05) or 39.1<br>or 31.88() or 31.9 or 32                                                                                                    |
|    | $\frac{1}{2}$ × 6.8 × 5.7 × sin their 109                         | M1    | $\frac{1}{2}$ × 10.2 × 5.7 × sin their 39<br>or $\frac{1}{2}$ × 10.2 × 6.8 × sin their 32                                                      |
|    | 18.3                                                              | A1 ft | 2                                                                                                                                              |
| 16 | Gradient = 4                                                      | B1    |                                                                                                                                                |
|    | Gradient of perpendicular = $-\frac{1}{4}$                        | B1ft  |                                                                                                                                                |
|    | Midpoint = ( 4, 3)                                                | B1    |                                                                                                                                                |

M1

A1

oe

oe

 $y - 3 = -\frac{1}{4}(x - 4)$  $y = -\frac{1}{4}x + 4$ 

| 17(a) $(AC^2 =) 12^2 + 10^2 \text{ or } (AX^2 =) 6^2 + 5^2$ M1 $(VM^2 =) 14^2 - 5^2$ or $(VX^2 =) 14^2 - 6^2$ $(AX =) \frac{\sqrt{244}}{2}$ $(\sqrt{61})$ A1       oe $(VM =) \sqrt{171}$ or $(VX^2 =) 14^2 - their AX^2$ M1 $(VX^2 =) their VM^2 - 6^2$ $(VX^2 =) 14^2 - their AX^2$ M1 $(VX^2 =) their VM^2 - 6^2$ or $(VX^2 =) their VN^2 - 5^2$ 11.6(2)       A1         17(b)       sin VCX = their VX $x$ M1       cos VCX = their $\sqrt{61}$ $x$ $x$ M1       cos VCX = their $\sqrt{61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $(AX =) \frac{\sqrt{244}}{2} (\sqrt{61})$ $(VX^{2} =) 14^{2} - \text{their } AX^{2}$ $(VX^{2} =) 14^{2} - \text{their } AX^{2}$ $M1$ $(VX^{2} =) \text{their } VM^{2} - 6^{2}$ $\text{or } (VX^{2} =) \text{their } VM^{2} - 5^{2}$ $11.6(2)$ $A1$ $17(b)$ $\sin VCX = \frac{\text{their } VX}{14}$ $M1$ $\cos VCX = \frac{\text{their } \sqrt{61}}{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| $\frac{11.6(2)}{11.6(2)} \qquad \qquad \text{A1} \qquad \qquad \text{or } (VX^2 =) \text{ their } VN^2 - 5^2$ $\frac{11.6(2)}{11.6(2)} \qquad \qquad \text{A1} \qquad \qquad \text{A2} \qquad \qquad \text{A3} \qquad \qquad \text{A4} $ |        |
| <b>17(b)</b> $\sin VCX = \frac{\text{their } VX}{14}$ M1 $\cos VCX = \frac{\text{their } \sqrt{61}}{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| $\sin VCX = \frac{14}{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| or tan $VCX = \frac{\text{their } VX}{VCX}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| or $\tan VCX = \frac{\text{their } VX}{\text{their } \sqrt{61}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 56.1° A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| <b>17(c)</b> Use of right-angled triangle VMX<br>where M is the mid-point of BCM1So that MV and MX are both at right<br>to BC, thus defining the angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | angles |
| $\tan VMX = \frac{\text{their } VX}{6} \qquad \qquad M1 \qquad \cos VMX = \frac{6}{\sqrt{14^2 - 5^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| or sin $VMX = \frac{\text{their } VX}{\sqrt{14^2 - 5^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| 62.7° A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |

| 18 | cos <i>x</i> = (±) 0.894427 | M1 |                       |
|----|-----------------------------|----|-----------------------|
|    | 26.6, 153.4, 206.6, 333.4   | A2 | A1 For 2 or 3 answers |

| 19 | $2x^5 + 5x^4$       | M1    |                                           |
|----|---------------------|-------|-------------------------------------------|
|    | $10x^4 + 20x^3$     | A2 ft | ft Their two terms differentiated         |
|    | $10(2)^4 + 20(2)^3$ | M1    | x = 2 in their terms from differentiating |
|    | 320                 | A1 ft | ft If M2 awarded                          |

| Q     | Answer                                        | Mark | Comments                                                                           |
|-------|-----------------------------------------------|------|------------------------------------------------------------------------------------|
| 20(a) | (5,1)                                         | B2   | B1 For (5, <i>k</i> ) or ( <i>c</i> , 1) or $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ |
| 20(b) | (3,1) or $\begin{pmatrix} 3\\1 \end{pmatrix}$ | B1   |                                                                                    |
|       | 2                                             | B1ft | ft Their two points                                                                |
| [     |                                               |      |                                                                                    |
| 21    | f(2) = 8 - 16 - 22 + 30                       | M1   |                                                                                    |
| 1     |                                               |      |                                                                                    |

| 21 | 1(2) = 8 = 10 = 22 + 30  |    |  |
|----|--------------------------|----|--|
|    | x – 2 is a factor        | A1 |  |
|    | $(x-2)(x^215)$           | M1 |  |
|    | $(x-2)(x^2-2x-15)$       | A1 |  |
|    | (x-2)(x+a)(x+b) ab = -15 | M1 |  |
|    | (x-2)(x-5)(x+3)          | A1 |  |

| 22 | (x-1)(x-3)                                                                            | M1 |                                                                 |
|----|---------------------------------------------------------------------------------------|----|-----------------------------------------------------------------|
|    | A (1, 0) and B (3, 0) or AB = 2                                                       | A1 | oe                                                              |
|    | Attempts to differentiate, evidenced by at least one term correct                     | M1 | $\frac{dy}{dx} = 2x - 4$                                        |
|    | Evidence of substituting $x = 5$ to find<br>the gradient of the tangent               | M1 | When $x = 5$ , $\frac{dy}{dx} = 2 \times 5 - 4$ (= 6)           |
|    | Attempt to work out equation of tangent                                               | M1 | Tangent is $y - 8 =$ their 6( $x - 5$ )<br>oe eg, $y = 6x - 22$ |
|    | Substitutes $y = 0$ into their equation<br>in an attempt to obtain $x = \frac{11}{3}$ | M1 | oe                                                              |
|    | $3 \times (\frac{11}{3} - 3) = 2$                                                     | A1 | ое                                                              |



# AQA Level 2 Certificate in Further Mathematics from 2011 onwards

**Qualification Accreditation Number: 600/2123/8** 

Every specification is assigned a national classification code indicating the subject area to which it belongs.

Centres should be aware that candidates who enter for more than one GCSE qualification with the same classification code will have only one grade counted for the purpose of the School and College Performance Tables. In the case of a candidate taking two qualifications with the same classification code that are of the same size and level, eg two full course GCSEs, the higher grade will count.

Centres may wish to advise candidates that, if they take two specifications with the same classification code, schools and colleges are very likely to take the view that they have achieved only one of the two GCSEs. The same view may be taken if candidates take two GCSE specifications that have different classification codes but have significant overlap of content. Candidates who have any doubts about their subject combinations should check with the institution to which they wish to progress before embarking on their programmes.

For updates and further information on any of our specifications, to find answers or ask us a question, register with Ask AQA at:

#### aqa.org.uk/askaqa

Download a copy of this specification from our website at: aqa.org.uk/igcsemaths

Free launch meetings are available in 2011 followed by further support meetings through the life of the specification. Further information is available at: http://events.aga.org.uk/ebooking

Copyright © 2011 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.