General Certificate of Education January 2005 Advanced Subsidiary Examination

MATHEMATICS Unit Further Pure 1

MFP1

Tuesday 1 February 2005 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the **blue** AQA booklet of formulae and statistical tables;
- an insert for use in Questions 7 and 8 (enclosed).

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP1.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- Fill in the boxes at the top of the insert.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P76509/0205/MFP1 6/6/

Answer all questions.

1 The equation

$$x^2 - 5x - 2 = 0$$

has roots α and β .

- (a) Write down the values of $\alpha + \beta$ and $\alpha\beta$. (2 marks)
- (b) Find the value of $\alpha^2 \beta + \alpha \beta^2$. (2 marks)
- (c) Find a quadratic equation which has roots

$$\alpha^2 \beta$$
 and $\alpha \beta^2$ (3 marks)

2 A curve has equation

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

- (a) Sketch the curve, showing the coordinates of the points of intersection with the coordinate axes. (3 marks)
- (b) Calculate the y-coordinates of the points of intersection of the curve with the line x = 1. Give your answers in the form $p\sqrt{2}$, where p is a rational number. (3 marks)
- (c) The curve is translated one unit in the positive *x* direction. Write down the equation of the curve after the translation. (2 marks)
- 3 It is given that z = x + iy, where x and y are real numbers.
 - (a) Write down, in terms of x and y, an expression for z^* , the complex conjugate of z.

 (1 mark)
 - (b) Find, in terms of x and y, the real and imaginary parts of

$$2z - iz^*$$
 (2 marks)

(c) Find the complex number z such that

$$2z - iz^* = 3i (3 marks)$$

4 For each of the following improper integrals, find the value of the integral **or** explain briefly why it does not have a value:

(a)
$$\int_{2}^{\infty} 8x^{-3} dx;$$
 (3 marks)

(b)
$$\int_{2}^{\infty} (8x^{-3} + 1) \, dx$$
; (1 mark)

(c)
$$\int_{2}^{\infty} 8x^{-3}(x+1) \, dx$$
. (3 marks)

5 (a) The transformation T_1 is defined by the matrix

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Describe this transformation geometrically.

(2 marks)

(b) The transformation T_2 is an anticlockwise rotation about the origin through an angle of 60° .

Find the matrix of the transformation T_2 . Use surds in your answer where appropriate. (3 marks)

- (c) Find the matrix of the transformation obtained by carrying out T_1 followed by T_2 .

 (3 marks)
- **6** The angle x radians satisfies the equation

$$\cos\left(2x + \frac{\pi}{6}\right) = \frac{1}{\sqrt{2}}$$

- (a) Find the general solution of this equation, giving the roots as exact values in terms of π .
- (b) Find the **number** of roots of the equation which lie between 0 and 2π . (2 marks)

7 [Figure 1, printed on the insert, is provided for use in this question.]

The variables x and y are known to be related by an equation of the form

$$y^3 = ax^2 + b$$

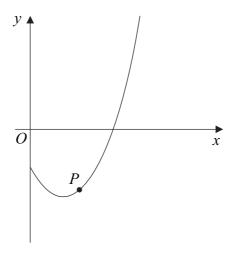
where a and b are constants.

Experimental evidence has provided the following approximate values:

х	1.5	4.0	5.0	6.5	8.0
y	5.0	6.3	7.0	8.0	9.0

(a) On **Figure 1**, draw a linear graph connecting the variables X and Y, where

$$X = x^2$$
 and $Y = y^3$ (5 marks)


(b) From your graph, find approximate values for the constants a and b. (3 marks)

8 [Figure 2, printed on the insert, is provided for use in this question.]

The diagram shows a part of the graph of y = f(x), where

$$f(x) = x^3 - 2x - 1$$

The point P has coordinates (1, -2).

- (a) Taking $x_1 = 1$ as a first approximation to a root of the equation f(x) = 0, use the Newton-Raphson method to find a second approximation, x_2 , to the root. (3 marks)
- (b) On **Figure 2**, draw a straight line to illustrate the Newton-Raphson method as used in part (a).

Mark x_1 and x_2 on **Figure 2**.

(2 marks)

- (c) By considering f(2), show that the second approximation found in part (a) is not as good as the first approximation. (2 marks)
- (d) Taking $x_1 = 1.6$ as a first approximation to the root, use the Newton-Raphson method to find a second approximation to the root. Give your answer to three decimal places.

(2 marks)

TURN OVER FOR THE NEXT QUESTION

9 The function f is defined by

$$f(x) = \frac{x^2 + 2x + 2}{x^2}$$

- (a) Write down the equations of the two asymptotes to the curve y = f(x). (2 marks)
- (b) By considering the expression $x^2 + 2x + 2$:
 - (i) show that the graph of y = f(x) does not intersect the x-axis; (2 marks)
 - (ii) find the non-real roots of the equation f(x) = 0. (3 marks)
- (c) (i) Show that, if the equation f(x) = k has two equal roots, then

$$4 - 8(1 - k) = 0$$
 (3 marks)

(ii) Deduce that the graph of y = f(x) has exactly one stationary point and find its coordinates. (4 marks)

END OF QUESTIONS

Surname	Other Names									
Centre Number					Candidate Number					
Candidate Signature										

General Certificate of Education January 2005 Advanced Subsidiary Examination

MATHEMATICS Unit Further Pure 1

MFP1

Tuesday 1 February 2005 Morning Session

Insert for use in answering Questions 7 and 8.

Fill in the boxes at the top of this page.

Fasten this insert securely to your answer book.

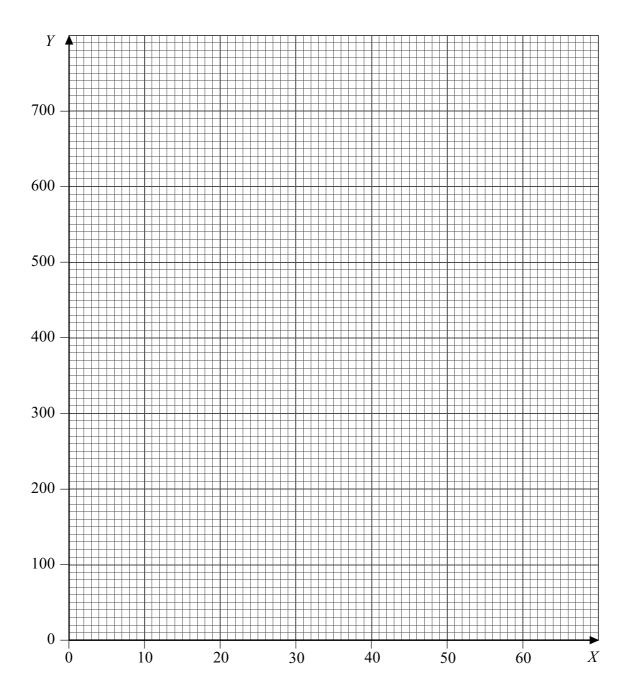


Figure 1 (for Question 7)

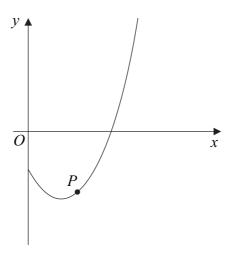


Figure 2 (for Question 8)

THERE IS NO TEXT PRINTED ON THIS PAGE